Mercurial > repos > public > sbplib
view +time/SBPInTimeScaled.m @ 1310:eb015fe9605b feature/poroelastic
Add viscoelastic displacement BC for normal-tangential. Bugfix traction BC for normal-tangential
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Mon, 20 Jul 2020 22:06:33 -0700 |
parents | e95a0f2f7a8d |
children | 47e86b5270ad |
line wrap: on
line source
classdef SBPInTimeScaled < time.Timestepper % The SBP in time method. % Implemented for A*v_t = B*v + f(t), v(0) = v0 % The resulting system of equations is % M*u_next= K*u_prev_end + f properties A,B f k % total time step. blockSize % number of points in each block N % Number of components order nodes Mtilde,Ktilde % System matrices L,U,p,q % LU factorization of M e_T scaling S, Sinv % Scaling matrices % Time state t vtilde n end methods function obj = SBPInTimeScaled(A, B, f, k, t0, v0, scaling, TYPE, order, blockSize) default_arg('TYPE','gauss'); default_arg('f',[]); if(strcmp(TYPE,'gauss')) default_arg('order',4) default_arg('blockSize',4) else default_arg('order', 8); default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE)); end obj.A = A; obj.B = B; obj.scaling = scaling; if ~isempty(f) obj.f = f; else obj.f = @(t)sparse(length(v0),1); end obj.k = k; obj.blockSize = blockSize; obj.N = length(v0); obj.n = 0; obj.t = t0; %==== Build the time discretization matrix =====% switch TYPE case 'equidistant' ops = sbp.D2Standard(blockSize,{0,obj.k},order); case 'optimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); case 'minimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); case 'gauss' ops = sbp.D1Gauss(blockSize,{0,obj.k}); end I = speye(size(A)); I_t = speye(blockSize,blockSize); D1 = kron(ops.D1, I); HI = kron(ops.HI, I); e_0 = kron(ops.e_l, I); e_T = kron(ops.e_r, I); obj.nodes = ops.x; % Convert to form M*w = K*v0 + f(t) tau = kron(I_t, A) * e_0; M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B); K = HI*tau; obj.S = kron(I_t, spdiag(scaling)); obj.Sinv = kron(I_t, spdiag(1./scaling)); obj.Mtilde = obj.Sinv*M*obj.S; obj.Ktilde = obj.Sinv*K*spdiag(scaling); obj.e_T = e_T; % LU factorization [obj.L,obj.U,obj.p,obj.q] = lu(obj.Mtilde, 'vector'); obj.vtilde = (1./obj.scaling).*v0; end function [v,t] = getV(obj) v = obj.scaling.*obj.vtilde; t = obj.t; end function obj = step(obj) forcing = zeros(obj.blockSize*obj.N,1); for i = 1:obj.blockSize forcing((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i)); end RHS = obj.Sinv*forcing + obj.Ktilde*obj.vtilde; y = obj.L\RHS(obj.p); z = obj.U\y; w = zeros(size(z)); w(obj.q) = z; obj.vtilde = obj.e_T'*w; obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end methods(Static) function N = smallestBlockSize(order,TYPE) default_arg('TYPE','gauss') switch TYPE case 'gauss' N = 4; end end end end