Mercurial > repos > public > sbplib
view +scheme/Wave2d.m @ 954:e8d356b8bc25 feature/utux2D
Close branch feature/utux2D
author | Jonatan Werpers <jonatan.werpers@it.uu.se> |
---|---|
date | Mon, 10 Dec 2018 08:29:41 +0000 |
parents | 706d1c2b4199 |
children | 78db023a7fe3 c12b84fe9b00 |
line wrap: on
line source
classdef Wave2d < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing x,y % Grid X,Y % Values of x and y for each grid point order % Order accuracy for the approximation D % non-stabalized scheme operator M % Derivative norm alpha H % Discrete norm Hi H_x, H_y % Norms in the x and y directions Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hi_x, Hi_y Hix, Hiy e_w, e_e, e_s, e_n d1_w, d1_e, d1_s, d1_n gamm_x, gamm_y end methods function obj = Wave2d(m,lim,order,alpha) default_arg('alpha',1); xlim = lim{1}; ylim = lim{2}; if length(m) == 1 m = [m m]; end m_x = m(1); m_y = m(2); [x, h_x] = util.get_grid(xlim{:},m_x); [y, h_y] = util.get_grid(ylim{:},m_y); ops_x = sbp.Ordinary(m_x,h_x,order); ops_y = sbp.Ordinary(m_y,h_y,order); I_x = speye(m_x); I_y = speye(m_y); D2_x = sparse(ops_x.derivatives.D2); H_x = sparse(ops_x.norms.H); Hi_x = sparse(ops_x.norms.HI); M_x = sparse(ops_x.norms.M); e_l_x = sparse(ops_x.boundary.e_1); e_r_x = sparse(ops_x.boundary.e_m); d1_l_x = sparse(ops_x.boundary.S_1); d1_r_x = sparse(ops_x.boundary.S_m); D2_y = sparse(ops_y.derivatives.D2); H_y = sparse(ops_y.norms.H); Hi_y = sparse(ops_y.norms.HI); M_y = sparse(ops_y.norms.M); e_l_y = sparse(ops_y.boundary.e_1); e_r_y = sparse(ops_y.boundary.e_m); d1_l_y = sparse(ops_y.boundary.S_1); d1_r_y = sparse(ops_y.boundary.S_m); D2 = kr(D2_x, I_y) + kr(I_x, D2_y); obj.H = kr(H_x,H_y); obj.Hx = kr(H_x,I_y); obj.Hy = kr(I_x,H_y); obj.Hix = kr(Hi_x,I_y); obj.Hiy = kr(I_x,Hi_y); obj.Hi = kr(Hi_x,Hi_y); obj.M = kr(M_x,H_y)+kr(H_x,M_y); obj.e_w = kr(e_l_x,I_y); obj.e_e = kr(e_r_x,I_y); obj.e_s = kr(I_x,e_l_y); obj.e_n = kr(I_x,e_r_y); obj.d1_w = kr(d1_l_x,I_y); obj.d1_e = kr(d1_r_x,I_y); obj.d1_s = kr(I_x,d1_l_y); obj.d1_n = kr(I_x,d1_r_y); obj.m = m; obj.h = [h_x h_y]; obj.order = order; obj.alpha = alpha; obj.D = alpha*D2; obj.x = x; obj.y = y; obj.X = kr(x,ones(m_y,1)); obj.Y = kr(ones(m_x,1),y); obj.gamm_x = h_x*ops_x.borrowing.M.S; obj.gamm_y = h_y*ops_y.borrowing.M.S; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','neumann'); default_arg('data',0); [e,d,s,gamm,halfnorm_inv] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} alpha = obj.alpha; % tau1 < -alpha^2/gamma tuning = 1.1; tau1 = -tuning*alpha/gamm; tau2 = s*alpha; p = tau1*e + tau2*d; closure = halfnorm_inv*p*e'; pp = halfnorm_inv*p; switch class(data) case 'double' penalty = pp*data; case 'function_handle' penalty = @(t)pp*data(t); otherwise error('Wierd data argument!') end % Neumann boundary condition case {'N','n','neumann'} alpha = obj.alpha; tau1 = -s*alpha; tau2 = 0; tau = tau1*e + tau2*d; closure = halfnorm_inv*tau*d'; pp = halfnorm_inv*tau; switch class(data) case 'double' penalty = pp*data; case 'function_handle' penalty = @(t)pp*data(t); otherwise error('Wierd data argument!') end % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d_u,s_u,gamm_u, halfnorm_inv] = obj.get_boundary_ops(boundary); [e_v,d_v,s_v,gamm_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); tuning = 1.1; alpha_u = obj.alpha; alpha_v = neighbour_scheme.alpha; % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v) tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning; tau2 = s_u*1/2*alpha_u; sig1 = s_u*(-1/2); sig2 = 0; tau = tau1*e_u + tau2*d_u; sig = sig1*e_u + sig2*d_u; closure = halfnorm_inv*( tau*e_u' + sig*alpha_u*d_u'); penalty = halfnorm_inv*(-tau*e_v' - sig*alpha_v*d_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e,d,s,gamm, halfnorm_inv] = get_boundary_ops(obj,boundary) switch boundary case 'w' e = obj.e_w; d = obj.d1_w; s = -1; gamm = obj.gamm_x; halfnorm_inv = obj.Hix; case 'e' e = obj.e_e; d = obj.d1_e; s = 1; gamm = obj.gamm_x; halfnorm_inv = obj.Hix; case 's' e = obj.e_s; d = obj.d1_s; s = -1; gamm = obj.gamm_y; halfnorm_inv = obj.Hiy; case 'n' e = obj.e_n; d = obj.d1_n; s = 1; gamm = obj.gamm_y; halfnorm_inv = obj.Hiy; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = prod(obj.m); end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end