Mercurial > repos > public > sbplib
view +time/SBPInTimeImplicitFormulation.m @ 577:e45c9b56d50d feature/grids
Add an Empty grid class
The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution.
In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 07 Sep 2017 09:16:12 +0200 |
parents | 7dbdf7390265 |
children | 5df7f99206b2 |
line wrap: on
line source
classdef SBPInTimeImplicitFormulation < time.Timestepper % The SBP in time method. % Implemented for A*v_t = B*v + f(t), v(0) = v0 properties A,B f k % total time step. blockSize % number of points in each block N % Number of components order nodes M,K % System matrices L,U,p,q % LU factorization of M e_T % Time state t v n end methods function obj = SBPInTimeImplicitFormulation(A, B, f, k, t0, v0, TYPE, order, blockSize) default_arg('TYPE','gauss'); default_arg('f',[]); if(strcmp(TYPE,'gauss')) default_arg('order',4) default_arg('blockSize',4) else default_arg('order', 8); default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE)); end obj.A = A; obj.B = B; if ~isempty(f) obj.f = f; else obj.f = @(t)sparse(length(v0),1); end obj.k = k; obj.blockSize = blockSize; obj.N = length(v0); obj.n = 0; obj.t = t0; %==== Build the time discretization matrix =====% switch TYPE case 'equidistant' ops = sbp.D2Standard(blockSize,{0,obj.k},order); case 'optimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); case 'minimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); case 'gauss' ops = sbp.D1Gauss(blockSize,{0,obj.k}); end I = speye(size(A)); I_t = speye(blockSize,blockSize); D1 = kron(ops.D1, I); HI = kron(ops.HI, I); e_0 = kron(ops.e_l, I); e_T = kron(ops.e_r, I); obj.nodes = ops.x; % Convert to form M*w = K*v0 + f(t) tau = kron(I_t, A) * e_0; M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B); K = HI*tau; obj.M = M; obj.K = K; obj.e_T = e_T; % LU factorization [obj.L,obj.U,obj.p,obj.q] = lu(obj.M, 'vector'); obj.v = v0; end function [v,t] = getV(obj) v = obj.v; t = obj.t; end function obj = step(obj) RHS = zeros(obj.blockSize*obj.N,1); for i = 1:length(obj.blockSize) RHS((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i)); end RHS = RHS + obj.K*obj.v; y = obj.L\RHS(obj.p); z = obj.U\y; w = zeros(size(z)); w(obj.q) = z; obj.v = obj.e_T'*w; obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end methods(Static) function N = smallestBlockSize(order,TYPE) default_arg('TYPE','gauss') switch TYPE case 'gauss' N = 4; end end end end