Mercurial > repos > public > sbplib
view +scheme/LaplaceCurvilinear.m @ 577:e45c9b56d50d feature/grids
Add an Empty grid class
The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution.
In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 07 Sep 2017 09:16:12 +0200 |
parents | 33b962620e24 |
children | 07f8311374c6 |
line wrap: on
line source
classdef LaplaceCurvilinear < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing grid order % Order accuracy for the approximation a,b % Parameters of the operator % Inner products and operators for physical coordinates D % Laplace operator H, Hi % Inner product e_w, e_e, e_s, e_n d_w, d_e, d_s, d_n % Normal derivatives at the boundary H_w, H_e, H_s, H_n % Boundary inner products Dx, Dy % Physical derivatives M % Gradient inner product % Metric coefficients J, Ji a11, a12, a22 x_u x_v y_u y_v % Inner product and operators for logical coordinates H_u, H_v % Norms in the x and y directions Hi_u, Hi_v Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hiu, Hiv du_w, dv_w du_e, dv_e du_s, dv_s du_n, dv_n gamm_u, gamm_v lambda end methods % Implements a*div(b*grad(u)) as a SBP scheme % TODO: Implement proper H, it should be the real physical quadrature, the logic quadrature may be but in a separate variable (H_logic?) function obj = LaplaceCurvilinear(g ,order, a, b, opSet) default_arg('opSet',@sbp.D2Variable); default_arg('a', 1); default_arg('b', 1); if b ~=1 error('Not implemented yet') end assert(isa(g, 'grid.Curvilinear')) m = g.size(); m_u = m(1); m_v = m(2); m_tot = g.N(); h = g.scaling(); h_u = h(1); h_v = h(2); % 1D operators ops_u = opSet(m_u, {0, 1}, order); ops_v = opSet(m_v, {0, 1}, order); I_u = speye(m_u); I_v = speye(m_v); D1_u = ops_u.D1; D2_u = ops_u.D2; H_u = ops_u.H; Hi_u = ops_u.HI; e_l_u = ops_u.e_l; e_r_u = ops_u.e_r; d1_l_u = ops_u.d1_l; d1_r_u = ops_u.d1_r; D1_v = ops_v.D1; D2_v = ops_v.D2; H_v = ops_v.H; Hi_v = ops_v.HI; e_l_v = ops_v.e_l; e_r_v = ops_v.e_r; d1_l_v = ops_v.d1_l; d1_r_v = ops_v.d1_r; % Logical operators Du = kr(D1_u,I_v); Dv = kr(I_u,D1_v); obj.Hu = kr(H_u,I_v); obj.Hv = kr(I_u,H_v); obj.Hiu = kr(Hi_u,I_v); obj.Hiv = kr(I_u,Hi_v); e_w = kr(e_l_u,I_v); e_e = kr(e_r_u,I_v); e_s = kr(I_u,e_l_v); e_n = kr(I_u,e_r_v); obj.du_w = kr(d1_l_u,I_v); obj.dv_w = (e_w'*Dv)'; obj.du_e = kr(d1_r_u,I_v); obj.dv_e = (e_e'*Dv)'; obj.du_s = (e_s'*Du)'; obj.dv_s = kr(I_u,d1_l_v); obj.du_n = (e_n'*Du)'; obj.dv_n = kr(I_u,d1_r_v); % Metric coefficients coords = g.points(); x = coords(:,1); y = coords(:,2); x_u = Du*x; x_v = Dv*x; y_u = Du*y; y_v = Dv*y; J = x_u.*y_v - x_v.*y_u; a11 = 1./J .* (x_v.^2 + y_v.^2); a12 = -1./J .* (x_u.*x_v + y_u.*y_v); a22 = 1./J .* (x_u.^2 + y_u.^2); lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); obj.x_u = x_u; obj.x_v = x_v; obj.y_u = y_u; obj.y_v = y_v; % Assemble full operators L_12 = spdiag(a12); Duv = Du*L_12*Dv; Dvu = Dv*L_12*Du; Duu = sparse(m_tot); Dvv = sparse(m_tot); ind = grid.funcToMatrix(g, 1:m_tot); for i = 1:m_v D = D2_u(a11(ind(:,i))); p = ind(:,i); Duu(p,p) = D; end for i = 1:m_u D = D2_v(a22(ind(i,:))); p = ind(i,:); Dvv(p,p) = D; end % Physical operators obj.J = spdiag(J); obj.Ji = spdiag(1./J); obj.D = obj.Ji*a*(Duu + Duv + Dvu + Dvv); obj.H = obj.J*kr(H_u,H_v); obj.Hi = obj.Ji*kr(Hi_u,Hi_v); obj.e_w = e_w; obj.e_e = e_e; obj.e_s = e_s; obj.e_n = e_n; %% normal derivatives I_w = ind(1,:); I_e = ind(end,:); I_s = ind(:,1); I_n = ind(:,end); a11_w = spdiag(a11(I_w)); a12_w = spdiag(a12(I_w)); a11_e = spdiag(a11(I_e)); a12_e = spdiag(a12(I_e)); a22_s = spdiag(a22(I_s)); a12_s = spdiag(a12(I_s)); a22_n = spdiag(a22(I_n)); a12_n = spdiag(a12(I_n)); s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2); s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2); s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2); s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2); obj.d_w = -1*(spdiag(1./s_w)*(a11_w*obj.du_w' + a12_w*obj.dv_w'))'; obj.d_e = (spdiag(1./s_e)*(a11_e*obj.du_e' + a12_e*obj.dv_e'))'; obj.d_s = -1*(spdiag(1./s_s)*(a22_s*obj.dv_s' + a12_s*obj.du_s'))'; obj.d_n = (spdiag(1./s_n)*(a22_n*obj.dv_n' + a12_n*obj.du_n'))'; obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; %% Boundary inner products obj.H_w = H_v*spdiag(s_w); obj.H_e = H_v*spdiag(s_e); obj.H_s = H_u*spdiag(s_s); obj.H_n = H_u*spdiag(s_n); % Misc. obj.m = m; obj.h = [h_u h_v]; obj.order = order; obj.grid = g; obj.a = a; obj.b = b; obj.a11 = a11; obj.a12 = a12; obj.a22 = a22; obj.lambda = lambda; obj.gamm_u = h_u*ops_u.borrowing.M.d1; obj.gamm_v = h_v*ops_v.borrowing.M.d1; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) default_arg('type','neumann'); default_arg('parameter', []); [e, d, gamm, H_b, ~] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} tuning = 1.2; % tuning = 20.2; b1 = gamm*obj.lambda./obj.a11.^2; b2 = gamm*obj.lambda./obj.a22.^2; tau1 = tuning * spdiag(-1./b1 - 1./b2); tau2 = 1; tau = (tau1*e + tau2*d)*H_b; closure = obj.a*obj.Hi*tau*e'; penalty = -obj.a*obj.Hi*tau; % Neumann boundary condition case {'N','n','neumann'} tau1 = -1; tau2 = 0; tau = (tau1*e + tau2*d)*H_b; closure = obj.a*obj.Hi*tau*d'; penalty = -obj.a*obj.Hi*tau; % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain tuning = 1.2; % tuning = 20.2; [e_u, d_u, gamm_u, H_b_u, I_u] = obj.get_boundary_ops(boundary); [e_v, d_v, gamm_v, H_b_v, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); u = obj; v = neighbour_scheme; b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; tau1 = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); tau1 = tuning * spdiag(tau1); tau2 = 1/2; sig1 = -1/2; sig2 = 0; tau = (e_u*tau1 + tau2*d_u)*H_b_u; sig = (sig1*e_u + sig2*d_u)*H_b_u; closure = obj.a*obj.Hi*( tau*e_u' + sig*d_u'); penalty = obj.a*obj.Hi*(-tau*e_v' + sig*d_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary % % I -- the indecies of the boundary points in the grid matrix function [e, d, gamm, H_b, I] = get_boundary_ops(obj, boundary) % gridMatrix = zeros(obj.m(2),obj.m(1)); % gridMatrix(:) = 1:numel(gridMatrix); ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); switch boundary case 'w' e = obj.e_w; d = obj.d_w; H_b = obj.H_w; I = ind(1,:); case 'e' e = obj.e_e; d = obj.d_e; H_b = obj.H_e; I = ind(end,:); case 's' e = obj.e_s; d = obj.d_s; H_b = obj.H_s; I = ind(:,1)'; case 'n' e = obj.e_n; d = obj.d_n; H_b = obj.H_n; I = ind(:,end)'; otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','e'} gamm = obj.gamm_u; case {'s','n'} gamm = obj.gamm_v; end end function N = size(obj) N = prod(obj.m); end end end