Mercurial > repos > public > sbplib
view +sbp/+implementations/d4_variable_2.m @ 577:e45c9b56d50d feature/grids
Add an Empty grid class
The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution.
In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 07 Sep 2017 09:16:12 +0200 |
parents | 43d02533bea3 |
children |
line wrap: on
line source
% Returns D2 as a function handle function [H, HI, D1, D2, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_2(m,h) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% 4:de ordn. SBP Finita differens %%% %%% operatorer framtagna av Ken Mattsson %%% %%% %%% %%% 6 randpunkter, diagonal norm %%% %%% %%% %%% Datum: 2013-11-11 %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BP = 2; if(m < 2*BP) error('Operator requires at least %d grid points', 2*BP); end % Norm Hv = ones(m,1); Hv(1) = 1/2; Hv(m) = 1/2; Hv = h*Hv; H = spdiag(Hv, 0); HI = spdiag(1./Hv, 0); % Boundary operators e_l = sparse(m,1); e_l(1) = 1; e_r = rot90(e_l, 2); d1_l = sparse(m,1); d1_l(1:3) = 1/h*[-3/2 2 -1/2]; d1_r = -rot90(d1_l, 2); d2_l = sparse(m,1); d2_l(1:3) = 1/h^2*[1 -2 1]; d2_r = rot90(d2_l, 2); d3_l = sparse(m,1); d3_l(1:4) = 1/h^3*[-1 3 -3 1]; d3_r = -rot90(d3_l, 2); % First derivative SBP operator, 1st order accurate at first 6 boundary points stencil = [-1/2, 0, 1/2]; diags = [-1 0 1]; Q = stripeMatrix(stencil, diags, m); D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r'); % Second derivative, 1st order accurate at first boundary points M = sparse(m,m); scheme_width = 3; scheme_radius = (scheme_width-1)/2; r = (1+scheme_radius):(m-scheme_radius); function D2 = D2_fun(c) Mm1 = -c(r-1)/2 - c(r)/2; M0 = c(r-1)/2 + c(r) + c(r+1)/2; Mp1 = -c(r)/2 - c(r+1)/2; M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m); M(1:2,1:2) = [c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; M(m-1:m,m-1:m) = [c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; M = 1/h*M; D2 = HI*(-M - c(1)*e_l*d1_l' + c(m)*e_r*d1_r'); end D2 = @D2_fun; % Fourth derivative, 0th order accurate at first 6 boundary points stencil = [1, -4, 6, -4, 1]; diags = -2:2; M4 = stripeMatrix(stencil, diags, m); M4_U = [ 0.13e2/0.10e2 -0.12e2/0.5e1 0.9e1/0.10e2 0.1e1/0.5e1; -0.12e2/0.5e1 0.26e2/0.5e1 -0.16e2/0.5e1 0.2e1/0.5e1; 0.9e1/0.10e2 -0.16e2/0.5e1 0.47e2/0.10e2 -0.17e2/0.5e1; 0.1e1/0.5e1 0.2e1/0.5e1 -0.17e2/0.5e1 0.29e2/0.5e1; ]; M4(1:4,1:4) = M4_U; M4(m-3:m,m-3:m) = rot90(M4_U, 2); M4 = 1/h^3*M4; D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r'); end