view +sbp/+implementations/d4_variable_2.m @ 577:e45c9b56d50d feature/grids

Add an Empty grid class The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution. In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 07 Sep 2017 09:16:12 +0200
parents 43d02533bea3
children
line wrap: on
line source

% Returns D2 as a function handle
function [H, HI, D1, D2, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_2(m,h)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %%% 4:de ordn. SBP Finita differens         %%%
    %%% operatorer framtagna av Ken Mattsson    %%%
    %%%                                         %%%
    %%% 6 randpunkter, diagonal norm            %%%
    %%%                                         %%%
    %%% Datum: 2013-11-11                       %%%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    BP = 2;
    if(m < 2*BP)
        error('Operator requires at least %d grid points', 2*BP);
    end

    % Norm
    Hv = ones(m,1);
    Hv(1) = 1/2;
    Hv(m) = 1/2;
    Hv = h*Hv;
    H = spdiag(Hv, 0);
    HI = spdiag(1./Hv, 0);

    % Boundary operators
    e_l = sparse(m,1);
    e_l(1) = 1;
    e_r = rot90(e_l, 2);

    d1_l = sparse(m,1);
    d1_l(1:3) = 1/h*[-3/2 2 -1/2];
    d1_r = -rot90(d1_l, 2);

    d2_l = sparse(m,1);
    d2_l(1:3) = 1/h^2*[1 -2 1];
    d2_r = rot90(d2_l, 2);

    d3_l = sparse(m,1);
    d3_l(1:4) = 1/h^3*[-1 3 -3 1];
    d3_r = -rot90(d3_l, 2);


    % First derivative SBP operator, 1st order accurate at first 6 boundary points
    stencil = [-1/2, 0, 1/2];
    diags = [-1 0 1];
    Q = stripeMatrix(stencil, diags, m);

    D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r');

    % Second derivative, 1st order accurate at first boundary points
    M = sparse(m,m);

    scheme_width = 3;
    scheme_radius = (scheme_width-1)/2;
    r = (1+scheme_radius):(m-scheme_radius);

    function D2 = D2_fun(c)
        Mm1 = -c(r-1)/2 - c(r)/2;
        M0  =  c(r-1)/2 + c(r)   + c(r+1)/2;
        Mp1 =            -c(r)/2 - c(r+1)/2;

        M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m);

        M(1:2,1:2) = [c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;];
        M(m-1:m,m-1:m) = [c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;];
        M = 1/h*M;

        D2 = HI*(-M - c(1)*e_l*d1_l' + c(m)*e_r*d1_r');
    end
    D2 = @D2_fun;

    % Fourth derivative, 0th order accurate at first 6 boundary points
    stencil = [1, -4, 6, -4, 1];
    diags = -2:2;
    M4 = stripeMatrix(stencil, diags, m);

    M4_U = [
         0.13e2/0.10e2 -0.12e2/0.5e1   0.9e1/0.10e2   0.1e1/0.5e1;
        -0.12e2/0.5e1   0.26e2/0.5e1  -0.16e2/0.5e1   0.2e1/0.5e1;
         0.9e1/0.10e2  -0.16e2/0.5e1   0.47e2/0.10e2 -0.17e2/0.5e1;
         0.1e1/0.5e1    0.2e1/0.5e1   -0.17e2/0.5e1   0.29e2/0.5e1;
    ];

    M4(1:4,1:4) = M4_U;
    M4(m-3:m,m-3:m) = rot90(M4_U, 2);
    M4 = 1/h^3*M4;

    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
end