view +sbp/+implementations/d4_lonely_8_min_boundary_points.m @ 577:e45c9b56d50d feature/grids

Add an Empty grid class The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution. In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 07 Sep 2017 09:16:12 +0200
parents b19e142fcae1
children
line wrap: on
line source

function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_8_min_boundary_points(m,h)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %%% 8:te ordn. SBP Finita differens         %%%
    %%% operatorer med diagonal norm            %%%
    %%%                                         %%%
    %%%                                         %%%
    %%% H           (Normen)                    %%%
    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
    %%% D2          (approx andra derivatan)    %%%
    %%% D2=HI*(R+C*D*S                          %%%
    %%%                                         %%%
    %%% R=-D1'*H*C*D1-RR                        %%%
    %%%                                         %%%
    %%% RR ?r dissipation)                      %%%
    %%% Dissipationen uppbyggd av D4:           %%%
    %%% DI=D4*B*H*D4                            %%%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    BP = 8;
    if(m<2*BP)
        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
    end

    % Norm
    Hv = ones(m,1);
    Hv(1:8) = [1498139/5080320, 1107307/725760, 20761/80640, 1304999/725760, 299527/725760, 103097/80640, 670091/725760, 5127739/5080320];
    Hv(m-7:m) = rot90(Hv(1:8),2);
    Hv = h*Hv;
    H = spdiag(Hv, 0);
    HI = spdiag(1./Hv, 0);


    % Boundary operators
    e_l = sparse(m,1);
    e_l(1) = 1;
    e_r = rot90(e_l, 2);

    d1_l = sparse(m,1);
    d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h;
    d1_r = -rot90(d1_l, 2);

    d2_l = sparse(m,1);
    d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2;
    d2_r = rot90(d2_l, 2);

    d3_l = sparse(m,1);
    d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3;
    d3_r = -rot90(d3_l, 2);


    % Fourth derivative, 1th order accurate at first 8 boundary points

    stencil = [-0.41e2/0.7560e4, 0.1261e4/0.15120e5,-0.541e3/0.840e3,0.4369e4/0.1260e4,-0.1669e4/0.180e3,0.1529e4/0.120e3,-0.1669e4/0.180e3,0.4369e4/0.1260e4,-0.541e3/0.840e3, 0.1261e4/0.15120e5,-0.41e2/0.7560e4];
    diags = -5:5;
    M4 = stripeMatrix(stencil, diags, m);

    M4_U = [
        0.151705142321e12/0.29189160000e11 -0.25643455801727e14/0.1634592960000e13 0.286417898677e12/0.15135120000e11 -0.4038072020317e13/0.326918592000e12 0.96455968907e11/0.20432412000e11 -0.151076916769e12/0.181621440000e12 0.14511526363e11/0.408648240000e12 -0.196663079e9/0.33359040000e11;
         -0.25643455801727e14/0.1634592960000e13 0.735383382473e12/0.14594580000e11 -0.5035391734409e13/0.77837760000e11 0.20392440917e11/0.467026560e9 -0.109540902413e12/0.6671808000e10 0.2488686539e10/0.884520000e9 -0.2798067539e10/0.33359040000e11 0.6433463591e10/0.408648240000e12;
         0.286417898677e12/0.15135120000e11 -0.5035391734409e13/0.77837760000e11 0.145019791981e12/0.1621620000e10 -0.333577111061e12/0.5189184000e10 0.18928722391e11/0.778377600e9 -0.93081704557e11/0.25945920000e11 -0.372660319e9/0.3243240000e10 0.2861399869e10/0.544864320000e12;
         -0.4038072020317e13/0.326918592000e12 0.20392440917e11/0.467026560e9 -0.333577111061e12/0.5189184000e10 0.59368471277e11/0.1167566400e10 -0.201168708569e12/0.9340531200e10 0.1492314487e10/0.432432000e9 0.1911896257e10/0.9340531200e10 0.24383341e8/0.2554051500e10;
         0.96455968907e11/0.20432412000e11 -0.109540902413e12/0.6671808000e10 0.18928722391e11/0.778377600e9 -0.201168708569e12/0.9340531200e10 0.1451230301e10/0.106142400e9 -0.103548247007e12/0.15567552000e11 0.27808437809e11/0.11675664000e11 -0.36870830713e11/0.65383718400e11;
         -0.151076916769e12/0.181621440000e12 0.2488686539e10/0.884520000e9 -0.93081704557e11/0.25945920000e11 0.1492314487e10/0.432432000e9 -0.103548247007e12/0.15567552000e11 0.1229498243e10/0.115830000e9 -0.32222519717e11/0.3706560000e10 0.470092704233e12/0.136216080000e12;
         0.14511526363e11/0.408648240000e12 -0.2798067539e10/0.33359040000e11 -0.372660319e9/0.3243240000e10 0.1911896257e10/0.9340531200e10 0.27808437809e11/0.11675664000e11 -0.32222519717e11/0.3706560000e10 0.11547819313e11/0.912161250e9 -0.15187033999199e14/0.1634592960000e13;
         -0.196663079e9/0.33359040000e11 0.6433463591e10/0.408648240000e12 0.2861399869e10/0.544864320000e12 0.24383341e8/0.2554051500e10 -0.36870830713e11/0.65383718400e11 0.470092704233e12/0.136216080000e12 -0.15187033999199e14/0.1634592960000e13 0.33832994693e11/0.2653560000e10;
    ];

    M4(1:8,1:8) = M4_U;
    M4(m-7:m,m-7:m) = rot90(M4_U, 2);
    M4 = 1/h^3*M4;

    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
end