view +sbp/+implementations/d4_compatible_4.m @ 577:e45c9b56d50d feature/grids

Add an Empty grid class The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution. In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 07 Sep 2017 09:16:12 +0200
parents f7ac3cd6eeaa
children
line wrap: on
line source

function [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m,...
    S3_1, S3_m, S_1, S_m] = d4_compatible_4(m,h)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %%% 4:de ordn. SBP Finita differens         %%%
    %%% operatorer framtagna av Ken Mattsson    %%%
    %%%                                         %%%
    %%% 6 randpunkter, diagonal norm            %%%
    %%%                                         %%%
    %%% Datum: 2013-11-11                       %%%
    %%%                                         %%%
    %%%                                         %%%
    %%% H           (Normen)                    %%%
    %%% D1          (approx f?rsta derivatan)   %%%
    %%% D2          (approx andra derivatan)    %%%
    %%% D3          (approx tredje derivatan)   %%%
    %%% D2          (approx fj?rde derivatan)   %%%
    %%%                                         %%%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % M?ste ange antal punkter (m) och stegl?ngd (h)
    % Notera att dessa opetratorer ?r framtagna f?r att anv?ndas n?r
    % vi har 3de och 4de derivator i v?r PDE
    % I annat fall anv?nd de "traditionella" som har noggrannare
    % randsplutningar f?r D1 och D2

    % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm,
    % vilket ?r n?dv?ndigt f?r stabilitet
    
    BP = 6;
    if(m<2*BP)
        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
    end

    H=speye(m,m);
    H_U=[0.3e1 / 0.11e2 0 0 0 0 0; 0 0.2125516311e10 / 0.1311004640e10 0 0 0 0; 0 0 0.278735189e9 / 0.1966506960e10 0 0 0; 0 0 0 0.285925927e9 / 0.163875580e9 0 0; 0 0 0 0 0.1284335339e10 / 0.1966506960e10 0; 0 0 0 0 0 0.4194024163e10 / 0.3933013920e10;];
    H(1:6,1:6)=H_U;
    H(m-5:m,m-5:m)=rot90(H_U,2);
    H=H*h;
    HI=inv(H);


    % First derivative SBP operator, 1st order accurate at first 6 boundary points

    q2=-1/12;q1=8/12;
%     Q=q2*(diag(ones(m-2,1),2) - diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1));
    stencil = [-q2,-q1,0,q1,q2];
    d = (length(stencil)-1)/2;
    diags = -d:d;
    Q = stripeMatrix(stencil, diags, m);

    %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2));

    Q_U = [0 0.9e1 / 0.11e2 -0.9e1 / 0.22e2 0.1e1 / 0.11e2 0 0; -0.9e1 / 0.11e2 0 0.2595224893e10 / 0.2622009280e10 -0.151435707e9 / 0.327751160e9 0.1112665611e10 / 0.2622009280e10 -0.1290899e7 / 0.9639740e7; 0.9e1 / 0.22e2 -0.2595224893e10 / 0.2622009280e10 0 0.1468436423e10 / 0.983253480e9 -0.1194603401e10 / 0.983253480e9 0.72033031e8 / 0.238364480e9; -0.1e1 / 0.11e2 0.151435707e9 / 0.327751160e9 -0.1468436423e10 / 0.983253480e9 0 0.439819541e9 / 0.327751160e9 -0.215942641e9 / 0.983253480e9; 0 -0.1112665611e10 / 0.2622009280e10 0.1194603401e10 / 0.983253480e9 -0.439819541e9 / 0.327751160e9 0 0.1664113643e10 / 0.2622009280e10; 0 0.1290899e7 / 0.9639740e7 -0.72033031e8 / 0.238364480e9 0.215942641e9 / 0.983253480e9 -0.1664113643e10 / 0.2622009280e10 0;];
    Q(1:6,1:6)=Q_U;
    Q(m-5:m,m-5:m)=rot90(  -Q_U ,2 );

    e_1=sparse(m,1);e_1(1)=1;
    e_m=sparse(m,1);e_m(m)=1;


    D1=H\(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ;

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



    % % Second derivative, 1st order accurate at first 6 boundary points
    % m2=1/12;m1=-16/12;m0=30/12;
    % M=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);
    % %M=(1/12*diag(ones(m-2,1),2)-16/12*diag(ones(m-1,1),1)-16/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)+30/12*diag(ones(m,1),0));
    % M_U=[0.2386127e7 / 0.2177280e7 -0.515449e6 / 0.453600e6 -0.10781e5 / 0.777600e6 0.61567e5 / 0.1360800e7 0.6817e4 / 0.403200e6 -0.1069e4 / 0.136080e6; -0.515449e6 / 0.453600e6 0.4756039e7 / 0.2177280e7 -0.1270009e7 / 0.1360800e7 -0.3751e4 / 0.28800e5 0.3067e4 / 0.680400e6 0.119459e6 / 0.10886400e8; -0.10781e5 / 0.777600e6 -0.1270009e7 / 0.1360800e7 0.111623e6 / 0.60480e5 -0.555587e6 / 0.680400e6 -0.551339e6 / 0.5443200e7 0.8789e4 / 0.453600e6; 0.61567e5 / 0.1360800e7 -0.3751e4 / 0.28800e5 -0.555587e6 / 0.680400e6 0.1025327e7 / 0.544320e6 -0.464003e6 / 0.453600e6 0.222133e6 / 0.5443200e7; 0.6817e4 / 0.403200e6 0.3067e4 / 0.680400e6 -0.551339e6 / 0.5443200e7 -0.464003e6 / 0.453600e6 0.5074159e7 / 0.2177280e7 -0.1784047e7 / 0.1360800e7; -0.1069e4 / 0.136080e6 0.119459e6 / 0.10886400e8 0.8789e4 / 0.453600e6 0.222133e6 / 0.5443200e7 -0.1784047e7 / 0.1360800e7 0.1812749e7 / 0.725760e6;];
    %
    % M(1:6,1:6)=M_U;
    %
    % M(m-5:m,m-5:m)=flipud( fliplr( M_U ) );
    % M=M/h;
    %
     S_U=[-0.11e2 / 0.6e1 3 -0.3e1 / 0.2e1 0.1e1 / 0.3e1;]/h;
     S_1=sparse(1,m);
     S_1(1:4)=S_U;
     S_m=sparse(1,m);

     S_m(m-3:m)=fliplr(-S_U);

    % D2=H\(-M-e_1*S_1+e_m*S_m);


    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



    % Third derivative, 1st order accurate at first 6 boundary points

    % q3=-1/8;q2=1;q1=-13/8;
    % Q3=q3*(diag(ones(m-3,1),3)-diag(ones(m-3,1),-3))+q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1));
    %
    % %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3));
    %
    %
    % Q3_U = [0 -0.88471e5 / 0.67200e5 0.58139e5 / 0.33600e5 -0.1167e4 / 0.2800e4 -0.89e2 / 0.11200e5 0.7e1 / 0.640e3; 0.88471e5 / 0.67200e5 0 -0.43723e5 / 0.16800e5 0.46783e5 / 0.33600e5 -0.191e3 / 0.3200e4 -0.1567e4 / 0.33600e5; -0.58139e5 / 0.33600e5 0.43723e5 / 0.16800e5 0 -0.4049e4 / 0.2400e4 0.29083e5 / 0.33600e5 -0.71e2 / 0.1400e4; 0.1167e4 / 0.2800e4 -0.46783e5 / 0.33600e5 0.4049e4 / 0.2400e4 0 -0.8591e4 / 0.5600e4 0.10613e5 / 0.11200e5; 0.89e2 / 0.11200e5 0.191e3 / 0.3200e4 -0.29083e5 / 0.33600e5 0.8591e4 / 0.5600e4 0 -0.108271e6 / 0.67200e5; -0.7e1 / 0.640e3 0.1567e4 / 0.33600e5 0.71e2 / 0.1400e4 -0.10613e5 / 0.11200e5 0.108271e6 / 0.67200e5 0;];
    %
    % Q3(1:6,1:6)=Q3_U;
    % Q3(m-5:m,m-5:m)=flipud( fliplr( -Q3_U ) );
    % Q3=Q3/h^2;



    S2_U=[2 -5 4 -1;]/h^2;
    S2_1=sparse(1,m);
    S2_1(1:4)=S2_U;
    S2_m=sparse(1,m);
    S2_m(m-3:m)=fliplr(S2_U);



    %D3=H\(Q3 - e_1*S2_1 + e_m*S2_m +1/2*(S_1'*S_1) -1/2*(S_m'*S_m) ) ;

    % Fourth derivative, 0th order accurate at first 6 boundary points (still
    % yield 4th order convergence if stable: for example u_tt=-u_xxxx

    m3=-1/6;m2=2;m1=-13/2;m0=28/3;
%     M4=m3*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3))+m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);

    stencil = [m3,m2,m1,m0,m1,m2,m3];
    d = (length(stencil)-1)/2;
    diags = -d:d;
    M4 = stripeMatrix(stencil, diags, m);

    %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0));

    M4_U=[0.227176919517319e15 / 0.94899692875680e14 -0.15262605263734e14 / 0.2965615402365e13 0.20205404771243e14 / 0.6778549491120e13 -0.3998303664097e13 / 0.23724923218920e14 0.1088305091927e13 / 0.94899692875680e14 -0.1686077077693e13 / 0.23724923218920e14; -0.15262605263734e14 / 0.2965615402365e13 0.280494781164181e15 / 0.23724923218920e14 -0.46417445546261e14 / 0.5931230804730e13 0.1705307929429e13 / 0.1694637372780e13 -0.553547394061e12 / 0.5931230804730e13 0.5615721694973e13 / 0.23724923218920e14; 0.20205404771243e14 / 0.6778549491120e13 -0.46417445546261e14 / 0.5931230804730e13 0.4135802350237e13 / 0.551742400440e12 -0.4140981465247e13 / 0.1078405600860e13 0.75538453067437e14 / 0.47449846437840e14 -0.4778134936391e13 / 0.11862461609460e14; -0.3998303664097e13 / 0.23724923218920e14 0.1705307929429e13 / 0.1694637372780e13 -0.4140981465247e13 / 0.1078405600860e13 0.20760974175677e14 / 0.2965615402365e13 -0.138330689701889e15 / 0.23724923218920e14 0.23711317526909e14 / 0.11862461609460e14; 0.1088305091927e13 / 0.94899692875680e14 -0.553547394061e12 / 0.5931230804730e13 0.75538453067437e14 / 0.47449846437840e14 -0.138330689701889e15 / 0.23724923218920e14 0.120223780251937e15 / 0.13557098982240e14 -0.151383731537477e15 / 0.23724923218920e14; -0.1686077077693e13 / 0.23724923218920e14 0.5615721694973e13 / 0.23724923218920e14 -0.4778134936391e13 / 0.11862461609460e14 0.23711317526909e14 / 0.11862461609460e14 -0.151383731537477e15 / 0.23724923218920e14 0.220304030094121e15 / 0.23724923218920e14;];

    M4(1:6,1:6)=M4_U;

    M4(m-5:m,m-5:m)=rot90(  M4_U ,2 );
    M4=M4/h^3;

    S3_U=[-1 3 -3 1;]/h^3;
    S3_1=sparse(1,m);
    S3_1(1:4)=S3_U;
    S3_m=sparse(1,m);
    S3_m(m-3:m)=fliplr(-S3_U);

    D4=H\(M4-e_1*S3_1+e_m*S3_m  + S_1'*S2_1-S_m'*S2_m);

    S_1 = S_1';
    S_m = S_m';
    S2_1 = S2_1';
    S2_m = S2_m';
    S3_1 = S3_1';
    S3_m = S3_m';

    % L=h*(m-1);
    %
    % x1=linspace(0,L,m)';
    % x2=x1.^2/fac(2);
    % x3=x1.^3/fac(3);
    % x4=x1.^4/fac(4);
    % x5=x1.^5/fac(5);
    %
    % x0=x1.^0/fac(1);

end