Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_noneq_8.m @ 577:e45c9b56d50d feature/grids
Add an Empty grid class
The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution.
In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 07 Sep 2017 09:16:12 +0200 |
parents | f7ac3cd6eeaa |
children | 4cb627c7fb90 |
line wrap: on
line source
function [D1,H,x,h] = d1_noneq_8(N,L) % L: Domain length % N: Number of grid points if(nargin < 2) L = 1; end if(N<16) error('Operator requires at least 16 grid points'); end % BP: Number of boundary points % m: Number of nonequidistant spacings % order: Accuracy of interior stencil BP = 8; m = 4; order = 8; %%%% Non-equidistant grid points %%%%% x0 = 0.0000000000000e+00; x1 = 3.8118550247622e-01; x2 = 1.1899550868338e+00; x3 = 2.2476300175641e+00; x4 = 3.3192851303204e+00; x5 = 4.3192851303204e+00; x6 = 5.3192851303204e+00; x7 = 6.3192851303204e+00; x8 = 7.3192851303204e+00; xb = sparse(m+1,1); for i = 0:m xb(i+1) = eval(['x' num2str(i)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Compute h %%%%%%%%%% h = L/(2*xb(end) + N-1-2*m); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Define grid %%%%%%%% x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix %%%%%%%% P = sparse(BP,1); %#ok<*NASGU> P0 = 1.0758368078310e-01; P1 = 6.1909685107891e-01; P2 = 9.6971176519117e-01; P3 = 1.1023441350947e+00; P4 = 1.0244688965833e+00; P5 = 9.9533550116831e-01; P6 = 1.0008236941028e+00; P7 = 9.9992060631812e-01; for i = 0:BP-1 P(i+1) = eval(['P' num2str(i)]); end H = ones(N,1); H(1:BP) = P; H(end-BP+1:end) = flip(P); H = spdiags(h*H,0,N,N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil switch order case 2 d = [-1/2,0,1/2]; case 4 d = [1/12,-2/3,0,2/3,-1/12]; case 6 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; case 8 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; case 10 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; case 12 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; end d = repmat(d,N,1); Q = spdiags(d,-order/2:order/2,N,N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.7284756079369e-01; Q0_2 = -2.5969732837062e-01; Q0_3 = 1.3519390385721e-01; Q0_4 = -6.9678474730984e-02; Q0_5 = 2.6434024071371e-02; Q0_6 = -5.5992311465618e-03; Q0_7 = 4.9954552590464e-04; Q0_8 = 0.0000000000000e+00; Q0_9 = 0.0000000000000e+00; Q0_10 = 0.0000000000000e+00; Q0_11 = 0.0000000000000e+00; Q1_0 = -6.7284756079369e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 9.4074021172233e-01; Q1_3 = -4.0511642426516e-01; Q1_4 = 1.9369192209331e-01; Q1_5 = -6.8638079843479e-02; Q1_6 = 1.3146457241484e-02; Q1_7 = -9.7652615479254e-04; Q1_8 = 0.0000000000000e+00; Q1_9 = 0.0000000000000e+00; Q1_10 = 0.0000000000000e+00; Q1_11 = 0.0000000000000e+00; Q2_0 = 2.5969732837062e-01; Q2_1 = -9.4074021172233e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 9.4316393361096e-01; Q2_4 = -3.5728039257451e-01; Q2_5 = 1.1266686855013e-01; Q2_6 = -1.8334941452280e-02; Q2_7 = 8.2741521740941e-04; Q2_8 = 0.0000000000000e+00; Q2_9 = 0.0000000000000e+00; Q2_10 = 0.0000000000000e+00; Q2_11 = 0.0000000000000e+00; Q3_0 = -1.3519390385721e-01; Q3_1 = 4.0511642426516e-01; Q3_2 = -9.4316393361096e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 8.7694387866575e-01; Q3_5 = -2.4698058719506e-01; Q3_6 = 4.7291642094198e-02; Q3_7 = -4.0135203618880e-03; Q3_8 = 0.0000000000000e+00; Q3_9 = 0.0000000000000e+00; Q3_10 = 0.0000000000000e+00; Q3_11 = 0.0000000000000e+00; Q4_0 = 6.9678474730984e-02; Q4_1 = -1.9369192209331e-01; Q4_2 = 3.5728039257451e-01; Q4_3 = -8.7694387866575e-01; Q4_4 = 0.0000000000000e+00; Q4_5 = 8.1123946853807e-01; Q4_6 = -2.0267150541446e-01; Q4_7 = 3.8680398901392e-02; Q4_8 = -3.5714285714286e-03; Q4_9 = 0.0000000000000e+00; Q4_10 = 0.0000000000000e+00; Q4_11 = 0.0000000000000e+00; Q5_0 = -2.6434024071371e-02; Q5_1 = 6.8638079843479e-02; Q5_2 = -1.1266686855013e-01; Q5_3 = 2.4698058719506e-01; Q5_4 = -8.1123946853807e-01; Q5_5 = 0.0000000000000e+00; Q5_6 = 8.0108544742793e-01; Q5_7 = -2.0088756283071e-01; Q5_8 = 3.8095238095238e-02; Q5_9 = -3.5714285714286e-03; Q5_10 = 0.0000000000000e+00; Q5_11 = 0.0000000000000e+00; Q6_0 = 5.5992311465618e-03; Q6_1 = -1.3146457241484e-02; Q6_2 = 1.8334941452280e-02; Q6_3 = -4.7291642094198e-02; Q6_4 = 2.0267150541446e-01; Q6_5 = -8.0108544742793e-01; Q6_6 = 0.0000000000000e+00; Q6_7 = 8.0039405922650e-01; Q6_8 = -2.0000000000000e-01; Q6_9 = 3.8095238095238e-02; Q6_10 = -3.5714285714286e-03; Q6_11 = 0.0000000000000e+00; Q7_0 = -4.9954552590464e-04; Q7_1 = 9.7652615479254e-04; Q7_2 = -8.2741521740941e-04; Q7_3 = 4.0135203618880e-03; Q7_4 = -3.8680398901392e-02; Q7_5 = 2.0088756283071e-01; Q7_6 = -8.0039405922650e-01; Q7_7 = 0.0000000000000e+00; Q7_8 = 8.0000000000000e-01; Q7_9 = -2.0000000000000e-01; Q7_10 = 3.8095238095238e-02; Q7_11 = -3.5714285714286e-03; for i = 1:BP for j = 1:BP Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operator %% D1 = H\Q; %%%%%%%%%%%%%%%%%%%%%%%%%%%