Mercurial > repos > public > sbplib
view +parametrization/old/triang_plot_interp.m @ 577:e45c9b56d50d feature/grids
Add an Empty grid class
The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution.
In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 07 Sep 2017 09:16:12 +0200 |
parents | 3a3cf386bb7e |
children |
line wrap: on
line source
% Plots a transfinite interpolation in x,y space using nu and nv curves along u and v axes. % Plots a interp of a triangle where one the interpolation is from a square % with one side collapsed to function h = triang_plot_interp_kindaworking(S,n) u = linspace(0,1,n); v = linspace(0,1,n); m = 100; m = 20; Xl_curves = cell(n,1); Xr_curves = cell(n,1); Y_curves = cell(n,1); function u = wierdness(v,d,N) if N == 0 u = 0; else u = N*d./(1-v); end end %Y curves t = linspace(0,1,m); for i = 1:n x = []; y = []; for j = 1:length(t) [x(j),y(j)] = S(t(j),v(i)); end Y_curves{i} = [x', y']; end % Right and left X curves t = linspace(0,1,m); d = u(2); for i = 1:n xl = []; yl = []; xr = []; yr = []; N = i-1; t = linspace(0,1-N*d,m); for j = 1:length(t) w = wierdness(t(j),d,N); [xr(j),yr(j)] = S(w,t(j)); [xl(j),yl(j)] = S(1-w,t(j)); end Xl_curves{i} = [xl', yl']; Xr_curves{i} = [xr', yr']; end for i = 1:n-1 line(Xl_curves{i}(:,1),Xl_curves{i}(:,2)) line(Xr_curves{i}(:,1),Xr_curves{i}(:,2)) line(Y_curves{i}(:,1),Y_curves{i}(:,2)) end end function h = triang_plot_interp_nonworking(S,n) u = linspace(0,1,n); v = linspace(0,1,n); m = 100; X_curves = cell(n-1,1); Y_curves = cell(n-1,1); K_curves = cell(n-1,1); t = linspace(0,1,m); for i = 1:n-1 x = []; y = []; for j = find(t+u(i) <= 1) [x(j),y(j)] = S(u(i),t(j)); end X_curves{i} = [x', y']; end for i = 1:n-1 x = []; y = []; for j = find(t+v(i) <= 1) [x(j),y(j)] = S(t(j),v(i)); end Y_curves{i} = [x', y']; end for i = 2:n x = []; y = []; for j = find(t<u(i)) [x(j),y(j)] = S(t(j), u(i)-t(j)); end K_curves{i-1} = [x', y']; end for i = 1:n-1 line(X_curves{i}(:,1),X_curves{i}(:,2)) line(Y_curves{i}(:,1),Y_curves{i}(:,2)) line(K_curves{i}(:,1),K_curves{i}(:,2)) end h = -1; % h = plot(X_curves{:},Y_curves{:},K_curves{:}); end