view +parametrization/old/curve_discretise.m @ 577:e45c9b56d50d feature/grids

Add an Empty grid class The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution. In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 07 Sep 2017 09:16:12 +0200
parents 81e0ead29431
children
line wrap: on
line source

% Discretises the curve g with the smallest number of points such that all segments
% are shorter than h. If do_plot is true the points of the discretisation and
% the normals of the curve in those points are plotted.
%
%   [t,p,d] = curve_discretise(g,h,do_plot)
%
%   t is a vector of input values to g.
%   p is a cector of points.
%   d are the length of the segments.
function [t,p,d] = curve_discretise(g,h,do_plot)
    default_arg('do_plot',false)

    n = 10;

    [t,p,d] = curve_discretise_n(g,n);

    % ni = 0;
    while any(d>h)
        [t,p,d] = curve_discretise_n(g,n);
        n = ceil(n*d(1)/h);
        % ni = ni+1;
    end

    % nj = 0;
    while all(d<h)
        [t,p,d] = curve_discretise_n(g,n);
        n = n-1;
        % nj = nj+1;
    end
    [t,p,d] = curve_discretise_n(g,n+1);

    % fprintf('ni = %d, nj = %d\n',ni,nj);

    if do_plot
        fprintf('n:%d  max: %f min: %f\n', n, max(d),min(d));
        p = parametrization.map_curve(g,t);
        figure
        show(g,t,h);
    end

end

function [t,p,d] = curve_discretise_n(g,n)
    t = linspace(0,1,n);
    t = equalize_d(g,t);
    d = D(g,t);
    p = parametrization.map_curve(g,t);
end

function d = D(g,t)
    p = parametrization.map_curve(g,t);

    d = zeros(1,length(t)-1);
    for i = 1:length(d)
        d(i) = norm(p(:,i) - p(:,i+1));
    end
end

function t = equalize_d(g,t)
    d = D(g,t);
    v = d-mean(d);
    while any(abs(v)>0.01*mean(d))
        dt = t(2:end)-t(1:end-1);
        t(2:end) = t(2:end) - cumsum(dt.*v./d);

        t = t/t(end);
        d = D(g,t);
        v = d-mean(d);
    end
end


function show(g,t,hh)
    p = parametrization.map_curve(g,t);



    h = parametrization.plot_curve(g);
    h.LineWidth = 2;
    axis equal
    hold on
    h = plot(p(1,:),p(2,:),'.');
    h.Color = [0.8500 0.3250 0.0980];
    h.MarkerSize = 24;
    hold off

    n = parametrization.curve_normals(g,t);
    hold on
    for  i = 1:length(t)
        p0 = p(:,i);
        p1 = p0 + hh*n(:,i);
        l = [p0, p1];
        h = plot(l(1,:),l(2,:));
        h.Color = [0.8500 0.3250 0.0980];
    end

end