Mercurial > repos > public > sbplib
view +parametrization/old/curve_discretise.m @ 577:e45c9b56d50d feature/grids
Add an Empty grid class
The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution.
In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 07 Sep 2017 09:16:12 +0200 |
parents | 81e0ead29431 |
children |
line wrap: on
line source
% Discretises the curve g with the smallest number of points such that all segments % are shorter than h. If do_plot is true the points of the discretisation and % the normals of the curve in those points are plotted. % % [t,p,d] = curve_discretise(g,h,do_plot) % % t is a vector of input values to g. % p is a cector of points. % d are the length of the segments. function [t,p,d] = curve_discretise(g,h,do_plot) default_arg('do_plot',false) n = 10; [t,p,d] = curve_discretise_n(g,n); % ni = 0; while any(d>h) [t,p,d] = curve_discretise_n(g,n); n = ceil(n*d(1)/h); % ni = ni+1; end % nj = 0; while all(d<h) [t,p,d] = curve_discretise_n(g,n); n = n-1; % nj = nj+1; end [t,p,d] = curve_discretise_n(g,n+1); % fprintf('ni = %d, nj = %d\n',ni,nj); if do_plot fprintf('n:%d max: %f min: %f\n', n, max(d),min(d)); p = parametrization.map_curve(g,t); figure show(g,t,h); end end function [t,p,d] = curve_discretise_n(g,n) t = linspace(0,1,n); t = equalize_d(g,t); d = D(g,t); p = parametrization.map_curve(g,t); end function d = D(g,t) p = parametrization.map_curve(g,t); d = zeros(1,length(t)-1); for i = 1:length(d) d(i) = norm(p(:,i) - p(:,i+1)); end end function t = equalize_d(g,t) d = D(g,t); v = d-mean(d); while any(abs(v)>0.01*mean(d)) dt = t(2:end)-t(1:end-1); t(2:end) = t(2:end) - cumsum(dt.*v./d); t = t/t(end); d = D(g,t); v = d-mean(d); end end function show(g,t,hh) p = parametrization.map_curve(g,t); h = parametrization.plot_curve(g); h.LineWidth = 2; axis equal hold on h = plot(p(1,:),p(2,:),'.'); h.Color = [0.8500 0.3250 0.0980]; h.MarkerSize = 24; hold off n = parametrization.curve_normals(g,t); hold on for i = 1:length(t) p0 = p(:,i); p1 = p0 + hh*n(:,i); l = [p0, p1]; h = plot(l(1,:),l(2,:)); h.Color = [0.8500 0.3250 0.0980]; end end