Mercurial > repos > public > sbplib
view +parametrization/Ti3D.m @ 577:e45c9b56d50d feature/grids
Add an Empty grid class
The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution.
In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 07 Sep 2017 09:16:12 +0200 |
parents | eef74cd9b49c |
children |
line wrap: on
line source
classdef Ti3D properties gs % {6}Surfaces V % FunctionHandle(XI,ETA,ZETA) end methods % TODO write all fancy features for flipping around with the surfaces % Each surface is defined with an outward facing outward and choosing % the "corner" where XI=0 if not possible the corner where ETA=0 is choosen function obj = Ti3D(CW,CE,CS,CN,CB,CT) obj.gs = {CE,CW,CS,CN,CB,CT}; gw = CW.g; ge = CE.g; gs = CS.g; gn = CN.g; gb = CB.g; gt = CT.g; function o = V_fun(XI,ETA,ZETA) XI=XI'; ETA=ETA'; ZETA=ZETA'; one=0*ETA+1; zero=0*ETA; Sw = gw(ETA,(1-ZETA)); Se = ge((1-ETA),(1-ZETA)); Ss = gs(XI,ZETA); Sn = gn((1-XI),(1-ZETA)); Sb = gb((1-XI),ETA); St = gt(XI,ETA); Ewt = gw(ETA,zero); Ewb = gw(ETA,one); Ews = gw(zero,1-ZETA); Ewn = gw(one,1-ZETA); Eet = ge(1-ETA,zero); Eeb = ge(1-ETA,one); Ees = ge(one,1-ZETA); Een = ge(zero,1-ZETA); Enb = gn(1-XI,one); Ent = gn(1-XI,zero); Est = gs(XI,one); Esb = gs(XI,zero); Cwbs = gw(zero,one); Cwbn = gw(one,one); Cwts = gw(zero,zero); Cwtn = gw(one,zero); Cebs = ge(one,one); Cebn = ge(zero,one); Cets = ge(one,zero); Cetn = ge(zero,zero); X1 = (1-XI).*Sw(1,:,:) + XI.*Se(1,:,:); X2 = (1-ETA).*Ss(1,:,:) + ETA.*Sn(1,:,:); X3 = (1-ZETA).*Sb(1,:,:) + ZETA.*St(1,:,:); X12 = (1-XI).*(1-ETA).*Ews(1,:,:) + (1-XI).*ETA.*Ewn(1,:,:) + XI.*(1-ETA).*Ees(1,:,:) + XI.*ETA.*Een(1,:,:); X13 = (1-XI).*(1-ZETA).*Ewb(1,:,:) + (1-XI).*ZETA.*Ewt(1,:,:) + XI.*(1-ZETA).*Eeb(1,:,:) + XI.*ZETA.*Eet(1,:,:); X23 = (1-ETA).*(1-ZETA).*Esb(1,:,:) + (1-ETA).*ZETA.*Est(1,:,:) + ETA.*(1-ZETA).*Enb(1,:,:) + ETA.*ZETA.*Ent(1,:,:); X123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(1,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(1,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(1,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(1,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(1,:,:) + XI.*(1-ETA).*ZETA.*Cets(1,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(1,:,:) + XI.*ETA.*ZETA.*Cetn(1,:,:); X = X1 + X2 + X3 - X12 - X13 - X23 + X123; Y1 = (1-XI).*Sw(2,:,:) + XI.*Se(2,:,:); Y2 = (1-ETA).*Ss(2,:,:) + ETA.*Sn(2,:,:); Y3 = (1-ZETA).*Sb(2,:,:) + ZETA.*St(2,:,:); Y12 = (1-XI).*(1-ETA).*Ews(2,:,:) + (1-XI).*ETA.*Ewn(2,:,:) + XI.*(1-ETA).*Ees(2,:,:) + XI.*ETA.*Een(2,:,:); Y13 = (1-XI).*(1-ZETA).*Ewb(2,:,:) + (1-XI).*ZETA.*Ewt(2,:,:) + XI.*(1-ZETA).*Eeb(2,:,:) + XI.*ZETA.*Eet(2,:,:); Y23 = (1-ETA).*(1-ZETA).*Esb(2,:,:) + (1-ETA).*ZETA.*Est(2,:,:) + ETA.*(1-ZETA).*Enb(2,:,:) + ETA.*ZETA.*Ent(2,:,:); Y123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(2,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(2,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(2,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(2,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(2,:,:) + XI.*(1-ETA).*ZETA.*Cets(2,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(2,:,:) + XI.*ETA.*ZETA.*Cetn(2,:,:); Y = Y1 + Y2 + Y3 - Y12 - Y13 - Y23 + Y123; Z1 = (1-XI).*Sw(3,:,:) + XI.*Se(3,:,:); Z2 = (1-ETA).*Ss(3,:,:) + ETA.*Sn(3,:,:); Z3 = (1-ZETA).*Sb(3,:,:) + ZETA.*St(3,:,:); Z12 = (1-XI).*(1-ETA).*Ews(3,:,:) + (1-XI).*ETA.*Ewn(3,:,:) + XI.*(1-ETA).*Ees(3,:,:) + XI.*ETA.*Een(3,:,:); Z13 = (1-XI).*(1-ZETA).*Ewb(3,:,:) + (1-XI).*ZETA.*Ewt(3,:,:) + XI.*(1-ZETA).*Eeb(3,:,:) + XI.*ZETA.*Eet(3,:,:); Z23 = (1-ETA).*(1-ZETA).*Esb(3,:,:) + (1-ETA).*ZETA.*Est(3,:,:) + ETA.*(1-ZETA).*Enb(3,:,:) + ETA.*ZETA.*Ent(3,:,:); Z123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(3,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(3,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(3,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(3,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(3,:,:) + XI.*(1-ETA).*ZETA.*Cets(3,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(3,:,:) + XI.*ETA.*ZETA.*Cetn(3,:,:); Z = Z1 + Z2 + Z3 - Z12 - Z13 - Z23 + Z123; o = [X;Y;Z]; end obj.V = @V_fun; end %Should be rewritten so that the input is xi eta zeta function [X,Y,Z] = map(obj,XI,ETA,ZETA) V = obj.V; p = V(XI,ETA,ZETA); X = p(1,:)'; Y = p(2,:)'; Z = p(3,:)'; end % function h = plot(obj,nu,nv) % S = obj.S; % % default_arg('nv',nu) % % u = linspace(0,1,nu); % v = linspace(0,1,nv); % % m = 100; % % X = zeros(nu+nv,m); % Y = zeros(nu+nv,m); % % % t = linspace(0,1,m); % for i = 1:nu % p = S(u(i),t); % X(i,:) = p(1,:); % Y(i,:) = p(2,:); % end % % for i = 1:nv % p = S(t,v(i)); % X(i+nu,:) = p(1,:); % Y(i+nu,:) = p(2,:); % end % % h = line(X',Y'); % end % % % function h = show(obj,nu,nv) % default_arg('nv',nu) % S = obj.S; % % if(nu>2 || nv>2) % h_grid = obj.plot(nu,nv); % set(h_grid,'Color',[0 0.4470 0.7410]); % end % % h_bord = obj.plot(2,2); % set(h_bord,'Color',[0.8500 0.3250 0.0980]); % set(h_bord,'LineWidth',2); % end % % % % TRANSFORMATIONS % function ti = translate(obj,a) % gs = obj.gs; % % for i = 1:length(gs) % new_gs{i} = gs{i}.translate(a); % end % % ti = grid.Ti(new_gs{:}); % end % % % Mirrors the Ti so that the resulting Ti is still left handed. % % (Corrected by reversing curves and switching e and w) % function ti = mirror(obj, a, b) % gs = obj.gs; % % new_gs = cell(1,4); % % new_gs{1} = gs{1}.mirror(a,b).reverse(); % new_gs{3} = gs{3}.mirror(a,b).reverse(); % new_gs{2} = gs{4}.mirror(a,b).reverse(); % new_gs{4} = gs{2}.mirror(a,b).reverse(); % % ti = grid.Ti(new_gs{:}); % end % % function ti = rotate(obj,a,rad) % gs = obj.gs; % % for i = 1:length(gs) % new_gs{i} = gs{i}.rotate(a,rad); % end % % ti = grid.Ti(new_gs{:}); % end % % function ti = rotate_edges(obj,n); % new_gs = cell(1,4); % for i = 0:3 % new_i = mod(i - n,4); % new_gs{new_i+1} = obj.gs{i+1}; % end % ti = grid.Ti(new_gs{:}); % end % end % % methods(Static) % function obj = points(p1, p2, p3, p4) % g1 = grid.Curve.line(p1,p2); % g2 = grid.Curve.line(p2,p3); % g3 = grid.Curve.line(p3,p4); % g4 = grid.Curve.line(p4,p1); % % obj = grid.Ti(g1,g2,g3,g4); % end % % function label(varargin) % if nargin == 2 && ischar(varargin{2}) % label_impl(varargin{:}); % else % for i = 1:length(varargin) % label_impl(varargin{i},inputname(i)); % end % end % % % function label_impl(ti,str) % S = ti.S; % % pc = S(0.5,0.5); % % margin = 0.1; % pw = S( margin, 0.5); % pe = S(1-margin, 0.5); % ps = S( 0.5, margin); % pn = S( 0.5, 1-margin); % % % ti.show(2,2); % grid.place_label(pc,str); % grid.place_label(pw,'w'); % grid.place_label(pe,'e'); % grid.place_label(ps,'s'); % grid.place_label(pn,'n'); % end % end end end