Mercurial > repos > public > sbplib
view +parametrization/Ti.m @ 577:e45c9b56d50d feature/grids
Add an Empty grid class
The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution.
In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 07 Sep 2017 09:16:12 +0200 |
parents | 433ccb5d2f0f |
children | d98d9c79573f |
line wrap: on
line source
classdef Ti properties gs % {4}Curve S % FunctionHandle(u,v) end methods % TODO function to label boundary names. % function to find largest and smallest delta h in the grid. Maybe shouldnt live here function obj = Ti(C1,C2,C3,C4) obj.gs = {C1,C2,C3,C4}; g1 = C1.g; g2 = C2.g; g3 = C3.g; g4 = C4.g; A = g1(0); B = g2(0); C = g3(0); D = g4(0); function o = S_fun(u,v) x1 = g1(u); x2 = g2(v); x3 = g3(1-u); x4 = g4(1-v); o1 = (1-v).*x1(1,:) + u.*x2(1,:) + v.*x3(1,:) + (1-u).*x4(1,:) ... -((1-u)*(1-v).*A(1,:) + u*(1-v).*B(1,:) + u*v.*C(1,:) + (1-u)*v.*D(1,:)); o2 = (1-v).*x1(2,:) + u.*x2(2,:) + v.*x3(2,:) + (1-u).*x4(2,:) ... -((1-u)*(1-v).*A(2,:) + u*(1-v).*B(2,:) + u*v.*C(2,:) + (1-u)*v.*D(2,:)); o = [o1;o2]; end obj.S = @S_fun; end % Does this funciton make sense? % Should it always be eval? function [X,Y] = map(obj,u,v) default_arg('v',u); if isscalar(u) u = linspace(0,1,u); end if isscalar(v) v = linspace(0,1,v); end S = obj.S; nu = length(u); nv = length(v); X = zeros(nv,nu); Y = zeros(nv,nu); u = rowVector(u); v = rowVector(v); for i = 1:nv p = S(u,v(i)); X(i,:) = p(1,:); Y(i,:) = p(2,:); end end % Evaluate S for each pair of u and v, % Return same shape as u function [x, y] = eval(obj, u, v) x = zeros(size(u)); y = zeros(size(u)); for i = 1:numel(u) p = obj.S(u(i), v(i)); x(i) = p(1,:); y(i) = p(2,:); end end function h = plot(obj,nu,nv) S = obj.S; default_arg('nv',nu) u = linspace(0,1,nu); v = linspace(0,1,nv); m = 100; X = zeros(nu+nv,m); Y = zeros(nu+nv,m); t = linspace(0,1,m); for i = 1:nu p = S(u(i),t); X(i,:) = p(1,:); Y(i,:) = p(2,:); end for i = 1:nv p = S(t,v(i)); X(i+nu,:) = p(1,:); Y(i+nu,:) = p(2,:); end h = line(X',Y'); end function h = show(obj,nu,nv) default_arg('nv',nu) S = obj.S; if(nu>2 || nv>2) h_grid = obj.plot(nu,nv); set(h_grid,'Color',[0 0.4470 0.7410]); end h_bord = obj.plot(2,2); set(h_bord,'Color',[0.8500 0.3250 0.0980]); set(h_bord,'LineWidth',2); end % TRANSFORMATIONS function ti = translate(obj,a) gs = obj.gs; for i = 1:length(gs) new_gs{i} = gs{i}.translate(a); end ti = parametrization.Ti(new_gs{:}); end % Mirrors the Ti so that the resulting Ti is still left handed. % (Corrected by reversing curves and switching e and w) function ti = mirror(obj, a, b) gs = obj.gs; new_gs = cell(1,4); new_gs{1} = gs{1}.mirror(a,b).reverse(); new_gs{3} = gs{3}.mirror(a,b).reverse(); new_gs{2} = gs{4}.mirror(a,b).reverse(); new_gs{4} = gs{2}.mirror(a,b).reverse(); ti = parametrization.Ti(new_gs{:}); end function ti = rotate(obj,a,rad) gs = obj.gs; for i = 1:length(gs) new_gs{i} = gs{i}.rotate(a,rad); end ti = parametrization.Ti(new_gs{:}); end function ti = rotate_edges(obj,n); new_gs = cell(1,4); for i = 0:3 new_i = mod(i - n,4); new_gs{new_i+1} = obj.gs{i+1}; end ti = parametrization.Ti(new_gs{:}); end end methods(Static) function obj = points(p1, p2, p3, p4) g1 = parametrization.Curve.line(p1,p2); g2 = parametrization.Curve.line(p2,p3); g3 = parametrization.Curve.line(p3,p4); g4 = parametrization.Curve.line(p4,p1); obj = parametrization.Ti(g1,g2,g3,g4); end function obj = rectangle(a, b) p1 = a; p2 = [b(1), a(2)]; p3 = b; p4 = [a(1), b(2)]; obj = parametrization.Ti.points(p1,p2,p3,p4); end % Like the constructor but allows inputing line curves as 2-cell arrays: % example: parametrization.Ti.linesAndCurves(g1, g2, {a, b} g4) function obj = linesAndCurves(C1, C2, C3, C4) C = {C1, C2, C3, C4}; c = cell(1,4); for i = 1:4 if ~iscell(C{i}) c{i} = C{i}; else c{i} = parametrization.Curve.line(C{i}{:}); end end obj = parametrization.Ti(c{:}); end function label(varargin) if nargin == 2 && ischar(varargin{2}) label_impl(varargin{:}); else for i = 1:length(varargin) label_impl(varargin{i},inputname(i)); end end function label_impl(ti,str) S = ti.S; pc = S(0.5,0.5); margin = 0.1; pw = S( margin, 0.5); pe = S(1-margin, 0.5); ps = S( 0.5, margin); pn = S( 0.5, 1-margin); ti.show(2,2); parametrization.place_label(pc,str); parametrization.place_label(pw,'w'); parametrization.place_label(pe,'e'); parametrization.place_label(ps,'s'); parametrization.place_label(pn,'n'); end end end end