view +noname/calculateSolution.m @ 577:e45c9b56d50d feature/grids

Add an Empty grid class The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution. In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 07 Sep 2017 09:16:12 +0200
parents bd99ea1fc733
children
line wrap: on
line source

% Calculates the solution of discretization for a given set of ms ts and orders.
%    discrHand -- function handle to a Discretization constructor
%    m         -- grid parameter
%    order     -- order of accuracy of the approximtion
%    T         -- time to calculate solution for
%    tsOpt     -- options for the time stepper creation.
%    input paramters m, t, order may all be vectors.
function [] = calculateSolution(filename, name, discrHand, m, T_in, order, tsOpt, force_flag)
    default_arg('force_flag',false);
    default_arg('tsOpt', []);

    if exist(filename,'file') && ~force_flag
        fprintf('File ''%s'' already exist.',filename);
        do_append = yesnoQuestion('Do you want to append to it?');
        if ~do_append
            fprintf('Exiting. No Solutions calculated.\n');
            return
        end
    end

    sf = SolutionFile(filename);

    orderWidth = findFieldWidth('%d',order);
    mWidth = findFieldWidth('%d',m);
    TWidth = findFieldWidth('%d',T_in);

    for i = 1:length(order)
        for j = 1:length(m)
            T = sort(T_in); % Make sure times are sorted

            discr = discrHand(m(j),order(i));
            k_max = discr.getTimestep(tsOpt);

            % Do we want to to save the initial conditions?
            if T(1) == 0
                snapshot = discr.getTimeSnapshot(0);
                saveToFile(sf, name, order(i), m(j),T(1), snapshot, NaN, NaN, discr);
                T(1) = [];
            end

            % Find out if times to be calulated are integer multiples of the smallest one.
            time_multiples = T/T(1);

            is_int_multiples = all(time_multiples == int64(time_multiples));

            if is_int_multiples
                fprintf('Calculating time series in increments\n');
            else
                fprintf('RESTARTING for each time in timeseries\n');
                fprintf('If this is not what you want try giving T in integer multiples.\n');
            end

            % T now contains all the times we need to step to,
            % if T contained 0 it has now been removed.

            if is_int_multiples
                % Times are integer multiples, we can save time
                [k,N] = alignedTimestep(k_max,T(1));
                tsOpt.k = k;
                ts = discr.getTimestepper(tsOpt);
                runtime = 0;
                for l = 1:length(T)
                    end_step = N * time_multiples(l);
                    fprintf('[order = %-*d, m = %-*d, T = %-*d]: ',orderWidth,order(i),mWidth,m(j),TWidth,T(l));
                    clock_start = tic();
                    ts.stepN(end_step-ts.n,true);
                    runtime = runtime + toc(clock_start);
                    snapshot = discr.getTimeSnapshot(ts);
                    saveToFile(sf, name, order(i), m(j),T(l), snapshot, runtime, k, discr);
                    fprintf('Done! (%.3fs)\n',runtime);
                end
            else
                % Times are not interger multiples, we have to start from 0 every time.
                for l = 1:length(T)
                    [k,N] = alignedTimestep(k_max,T(l));
                    tsOpt.k = k;
                    ts = discr.getTimestepper(tsOpt);
                    fprintf('[order = %-*d, m = %-*d, T = %-*d]: ',orderWidth,order(i),mWidth,m(j),TWidth,T(l));
                    clock_start = tic();
                    [v,t] = ts.stepN(N-ts.n,true);
                    runtime = toc(clock_start);
                    snapshot = discr.getTimeSnapshot(ts);
                    saveToFile(sf, name, order(i), m(j),T(l), snapshot, runtime, k, discr);
                    fprintf('Done! (%.3fs)\n',runtime);
                end

            end
            sf.stupidSave();
        end
    end
end


function saveToFile(sf, name, order, m, T, snapshot, runtime, k, discr)
    key.name  = name;
    key.order = order;
    key.m     = m;
    key.T     = T;

    entry.repr = snapshot;
    entry.runtime = runtime;
    entry.k = k;
    entry.discr = discr;

    sf.store(key,entry);
end