view +grid/evalOnTest.m @ 577:e45c9b56d50d feature/grids

Add an Empty grid class The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution. In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 07 Sep 2017 09:16:12 +0200
parents 4c3f55a628c8
children 190941ec12d8
line wrap: on
line source

function tests = evalOnTest()
    tests = functiontests(localfunctions);
end

function testInputConstant(testCase)
    in  = {
        0,
        47,
        1,
        [1; 2],
    };

    out = {
        [0; 0; 0],
        [47; 47; 47],
        [1; 1; 1],
        [1; 2; 1; 2; 1; 2],
    };

    g = getTestGrid('1d');

    for i = 1:length(in)
        gf = grid.evalOn(g,in{i});
        testCase.verifyEqual(gf, out{i});
    end
end

% evalOn should give and error if the number of inputs to func is not the same as
% the number of dimensions of the grid.
function testNumberOfInputs(testCase)
    cases = {
        {getTestGrid('1d'), @(x,y)x-y},
        {getTestGrid('2d'), @(x)x    },
    }

    for i = 1:length(cases)
        g = cases{i}{1};
        f = cases{i}{2};
        testCase.verifyError(@()grid.evalOn(g, f),'grid:evalOn:WrongNumberOfInputs',sprintf('in(%d) = %s',i,toString(f)));
    end
end

function testInputScalarFunction1d(testCase)
    in  = {
        @(x)1+x*0,
        @(x)x,
        @(x)x.*x,
    };

    out = {
        [1; 1; 1],
        [0; 1; 2],
        [0; 1; 4],
    };

    g = getTestGrid('1d');

    for i = 1:length(in)
        gf = grid.evalOn(g,in{i});
        testCase.verifyEqual(gf, out{i});
    end
end

function testInputScalarFunction2d(testCase)
    in  = {
        @(x,y)1+x*0,
        @(x,y)x-y,
        @(x,y)x./(1+y),
    };

    out = {
        [1; 1; 1; 1; 1; 1; 1; 1; 1],
        [0; -1; -2; 1; 0; -1; 2; 1; 0],
        [0; 0; 0; 1; 1/2; 1/3; 2; 1; 2/3],
    };

    g = getTestGrid('2d');

    for i = 1:length(in)
        gf = grid.evalOn(g, in{i});
        testCase.verifyEqual(gf, out{i});
    end
end


function testInputVectorFunction(testCase)
    g = getTestGrid('1d');
    in = @(x)[x; -2*x];
    out = [0; 0; 1; -2; 2; -4];

    gf = grid.evalOn(g,in);
    testCase.verifyEqual(gf, out);

    g = getTestGrid('2d');
    in = @(x,y)[x.^2; -2*y];
    out = [
        0;  0;
        0; -2;
        0; -4;
        1;  0;
        1; -2;
        1; -4;
        4;  0;
        4; -2;
        4; -4;
    ];

    gf = grid.evalOn(g,in);
    testCase.verifyEqual(gf, out);
end


function testInputErrorVectorValued(testCase)
     in  = {
        [1,2,3],
        @(x,y)[x,-y];
    };

    g = getTestGrid('2d');

    for i = 1:length(in)
        testCase.verifyError(@()grid.evalOn(g, in{i}),'grid:evalOn:VectorValuedWrongDim',sprintf('in(%d) = %s',i,toString(in{i})));
    end
end

function g = getTestGrid(d)
    switch d
        case '1d'
            g = grid.equidistant(3,{0,2});
        case '2d'
            g = grid.equidistant([3,3],{0,2},{0,2});
    end
end