Mercurial > repos > public > sbplib
view +grid/CurvilinearTest.m @ 577:e45c9b56d50d feature/grids
Add an Empty grid class
The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution.
In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 07 Sep 2017 09:16:12 +0200 |
parents | 7c1d3fc33f90 |
children |
line wrap: on
line source
function tests = CurvilinearTest() tests = functiontests(localfunctions); end function testMappingInputGridFunction(testCase) in = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; out = { [10, 1]; [10*6, 2]; [10*5*7, 3]; }; % How to test this? Just make sure it runs without errors. for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(size(g.coords),out{i}); end end function testMappingInputComponentMatrix(testCase) in = { {{1:3}, [1 2 3]'}, {{1:2, 1:3}, [1 2 3 4 5 6; 7 8 9 10 11 12]'}, }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.coords,in{i}{2}); end end function testMappingInputCellOfMatrix(testCase) in = { {{1:3}, {[1 2 3]'}}, {{1:2, 1:3}, {[1 2 3; 4 5 6], [7 8 9; 10 11 12]}}, }; out = { [1 2 3]', [1 2 3 4 5 6; 7 8 9 10 11 12]', }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.coords,out{i}); end end function testMappingInputCellOfVectors(testCase) in = { {{1:3}, {[1 2 3]'}}, {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}}, }; out = { [1 2 3]', [1 2 3 4 5 6; 7 8 9 10 11 12]', }; end function testMappingInputError(testCase) testCase.verifyFail(); end function testScaling(testCase) in = {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}}; g = grid.Curvilinear(in{2},in{1}{:}); testCase.verifyError(@()g.scaling(),'grid:Curvilinear:NoScalingSet'); g.logicalGrid.h = [2 1]; testCase.verifyEqual(g.scaling(),[2 1]); end function testGetBoundaryNames(testCase) in = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; out = { {'l', 'r'}, {'w', 'e', 's', 'n'}, {'w', 'e', 's', 'n', 'd', 'u'}, }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.getBoundaryNames(), out{i}); end end function testGetBoundary(testCase) grids = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; boundaries = { {'l', 'r'}, {'w', 'e', 's', 'n'}, {'w', 'e', 's', 'n', 'd', 'u'}, }; for ig = 1:length(grids) g = grid.Curvilinear(grids{ig}{2},grids{ig}{1}{:}); logicalGrid = grid.Cartesian(grids{ig}{1}{:}); for ib = 1:length(boundaries{ig}) logicalBoundary = logicalGrid.getBoundary(boundaries{ig}{ib}); x = num2cell(logicalBoundary',2); expectedBoundary = grids{ig}{2}(x{:})'; testCase.verifyEqual(g.getBoundary(boundaries{ig}{ib}), expectedBoundary); end end end