Mercurial > repos > public > sbplib
view +anim/animate.m @ 577:e45c9b56d50d feature/grids
Add an Empty grid class
The need turned up for the flexural code when we may or may not have a grid for the open water and want to plot that solution.
In case there is no open water we need an empty grid to plot the empty gridfunction against to avoid errors.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 07 Sep 2017 09:16:12 +0200 |
parents | 2fe13db674da |
children |
line wrap: on
line source
% Calls F(t) repeatedly % Should there be a Fsetup and a F, two function, to allow creating a plot and then updating it? % F takes the time to generate the frame for and returns the actual time for the generated frame. % t = F(t_r) is a function that paints a frame for time t. t is the closest time <=t_r % it will be called for increasnig t. %Todo: make it catch up and produce warnings if it lags behind? Instead of just requesting the next target time % If adapt is true time_modifier is treated as an upper bound function animate(F, tstart, tend, time_modifier, target_frame_rate) default_arg('time_modifier', 1); default_arg('target_frame_rate',30); % t is simulation time % tau is real time time_modifier_bound = time_modifier; dTau_target = 1/target_frame_rate; % Real time between frames rs = util.ReplaceableString(); rs.appendFormat(' t: %d\n'); rs.appendFormat(' tau: %d\n'); rs.appendFormat(' target tau: %d\n'); rs.appendFormat(' Target fps: %.2f\n'); rs.appendFormat(' Actual fps: %.2f\n'); rs.appendFormat('Target time_modifier: %d\n'); rs.appendFormat('actual time_modifier: %d\n'); animation_start = tic(); prevTau = 0; targetTau = 0; tauFrameStart = -dTau_target; t = F(tstart); while t < tend % Sleep until the frame should start pause(targetTau-toc(animation_start)); tau = toc(animation_start); dTau = tau - tauFrameStart; % Calculate error in tau e_Tau = tau - targetTau; % Regulate time_modifier based on e_Tau % time_modifier = min(time_modifier_bound, max(0.5, abs(1-e_Tau/dTau)) * time_modifier); % Mark the start of the frame tauFrameStart = tau; dt_target = dTau_target*time_modifier; % Targeted simulation time between frames t_prev = t; t = F(t + dt_target); % Run simulation % Calculate when this frame should end and the next start. (this depends on what simulation time we ended up on) dt = t-t_prev; % targetTau = targetTau + dt/time_modifier; targetTau = targetTau + dTau_target; % Update information about this frame tau = toc(animation_start); rs.updateParam(t, tau, targetTau, 1/dTau_target, 1/dTau, time_modifier_bound, time_modifier); end % Final time reporting time_to_animate = toc(animation_start); expected_time = tend/time_modifier; fprintf('\n'); fprintf('Time to animate: %.3f\n', time_to_animate) fprintf('Expected time : %.3f\n', expected_time) end