Mercurial > repos > public > sbplib
view +scheme/Elastic2dVariable.m @ 1334:df8c71b80c33 feature/D2_boundary_opt
Use the logic grid associated with a CurvilinearGrid instead of creating a new one
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 07 May 2022 10:40:47 +0200 |
parents | 60c875c18de3 |
children |
line wrap: on
line source
classdef Elastic2dVariable < scheme.Scheme % Discretizes the elastic wave equation: % rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i % opSet should be cell array of opSets, one per dimension. This % is useful if we have periodic BC in one direction. properties m % Number of points in each direction, possibly a vector h % Grid spacing grid dim order % Order of accuracy for the approximation % Diagonal matrices for variable coefficients LAMBDA % Lame's first parameter, related to dilation MU % Shear modulus RHO, RHOi, RHOi_kron % Density D % Total operator D1 % First derivatives % Second derivatives D2_lambda D2_mu % Boundary operators in cell format, used for BC T_w, T_e, T_s, T_n % Traction operators tau_w, tau_e, tau_s, tau_n % Return vector field tau1_w, tau1_e, tau1_s, tau1_n % Return scalar field tau2_w, tau2_e, tau2_s, tau2_n % Return scalar field % Inner products H, Hi, Hi_kron, H_1D % Boundary inner products (for scalar field) H_w, H_e, H_s, H_n % Boundary restriction operators e_w, e_e, e_s, e_n % Act on vector field, return vector field at boundary e1_w, e1_e, e1_s, e1_n % Act on vector field, return scalar field at boundary e2_w, e2_e, e2_s, e2_n % Act on vector field, return scalar field at boundary e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field % E{i}^T picks out component i E % Borrowing constants of the form gamma*h, where gamma is a dimensionless constant. theta_R % Borrowing (d1- D1)^2 from R theta_H % First entry in norm matrix theta_M % Borrowing d1^2 from M. % Structures used for adjoint optimization B end methods % The coefficients can either be function handles or grid functions % optFlag -- if true, extra computations are performed, which may be helpful for optimization. function obj = Elastic2dVariable(g ,order, lambda, mu, rho, opSet, optFlag) default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); default_arg('lambda', @(x,y) 0*x+1); default_arg('mu', @(x,y) 0*x+1); default_arg('rho', @(x,y) 0*x+1); default_arg('optFlag', false); dim = 2; assert(isa(g, 'grid.Cartesian')) if isa(lambda, 'function_handle') lambda = grid.evalOn(g, lambda); end if isa(mu, 'function_handle') mu = grid.evalOn(g, mu); end if isa(rho, 'function_handle') rho = grid.evalOn(g, rho); end m = g.size(); m_tot = g.N(); h = g.scaling(); lim = g.lim; if isempty(lim) x = g.x; lim = cell(length(x),1); for i = 1:length(x) lim{i} = {min(x{i}), max(x{i})}; end end % 1D operators ops = cell(dim,1); for i = 1:dim ops{i} = opSet{i}(m(i), lim{i}, order); end % Borrowing constants for i = 1:dim obj.theta_R{i} = h(i)*ops{i}.borrowing.R.delta_D; obj.theta_H{i} = h(i)*ops{i}.borrowing.H11; obj.theta_M{i} = h(i)*ops{i}.borrowing.M.d1; end I = cell(dim,1); D1 = cell(dim,1); D2 = cell(dim,1); H = cell(dim,1); Hi = cell(dim,1); e_0 = cell(dim,1); e_m = cell(dim,1); d1_0 = cell(dim,1); d1_m = cell(dim,1); for i = 1:dim I{i} = speye(m(i)); D1{i} = ops{i}.D1; D2{i} = ops{i}.D2; H{i} = ops{i}.H; Hi{i} = ops{i}.HI; e_0{i} = ops{i}.e_l; e_m{i} = ops{i}.e_r; d1_0{i} = ops{i}.d1_l; d1_m{i} = ops{i}.d1_r; end %====== Assemble full operators ======== LAMBDA = spdiag(lambda); obj.LAMBDA = LAMBDA; MU = spdiag(mu); obj.MU = MU; RHO = spdiag(rho); obj.RHO = RHO; obj.RHOi = inv(RHO); obj.D1 = cell(dim,1); obj.D2_lambda = cell(dim,1); obj.D2_mu = cell(dim,1); % D1 obj.D1{1} = kron(D1{1},I{2}); obj.D1{2} = kron(I{1},D1{2}); % Boundary restriction operators e_l = cell(dim,1); e_r = cell(dim,1); e_l{1} = kron(e_0{1}, I{2}); e_l{2} = kron(I{1}, e_0{2}); e_r{1} = kron(e_m{1}, I{2}); e_r{2} = kron(I{1}, e_m{2}); e_scalar_w = e_l{1}; e_scalar_e = e_r{1}; e_scalar_s = e_l{2}; e_scalar_n = e_r{2}; I_dim = speye(dim, dim); e_w = kron(e_scalar_w, I_dim); e_e = kron(e_scalar_e, I_dim); e_s = kron(e_scalar_s, I_dim); e_n = kron(e_scalar_n, I_dim); % Boundary derivatives d1_l = cell(dim,1); d1_r = cell(dim,1); d1_l{1} = kron(d1_0{1}, I{2}); d1_l{2} = kron(I{1}, d1_0{2}); d1_r{1} = kron(d1_m{1}, I{2}); d1_r{2} = kron(I{1}, d1_m{2}); % E{i}^T picks out component i. E = cell(dim,1); I = speye(m_tot,m_tot); for i = 1:dim e = sparse(dim,1); e(i) = 1; E{i} = kron(I,e); end obj.E = E; e1_w = (e_scalar_w'*E{1}')'; e1_e = (e_scalar_e'*E{1}')'; e1_s = (e_scalar_s'*E{1}')'; e1_n = (e_scalar_n'*E{1}')'; e2_w = (e_scalar_w'*E{2}')'; e2_e = (e_scalar_e'*E{2}')'; e2_s = (e_scalar_s'*E{2}')'; e2_n = (e_scalar_n'*E{2}')'; % D2 for i = 1:dim obj.D2_lambda{i} = sparse(m_tot, m_tot); obj.D2_mu{i} = sparse(m_tot, m_tot); end ind = grid.funcToMatrix(g, 1:m_tot); for i = 1:m(2) D_lambda = D2{1}(lambda(ind(:,i))); D_mu = D2{1}(mu(ind(:,i))); p = ind(:,i); obj.D2_lambda{1}(p,p) = D_lambda; obj.D2_mu{1}(p,p) = D_mu; end for i = 1:m(1) D_lambda = D2{2}(lambda(ind(i,:))); D_mu = D2{2}(mu(ind(i,:))); p = ind(i,:); obj.D2_lambda{2}(p,p) = D_lambda; obj.D2_mu{2}(p,p) = D_mu; end % Quadratures obj.H = kron(H{1},H{2}); obj.Hi = inv(obj.H); obj.H_w = H{2}; obj.H_e = H{2}; obj.H_s = H{1}; obj.H_n = H{1}; obj.H_1D = {H{1}, H{2}}; % Differentiation matrix D (without SAT) D2_lambda = obj.D2_lambda; D2_mu = obj.D2_mu; D1 = obj.D1; D = sparse(dim*m_tot,dim*m_tot); d = @kroneckerDelta; % Kronecker delta db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta for i = 1:dim for j = 1:dim D = D + E{i}*inv(RHO)*( d(i,j)*D2_lambda{i}*E{j}' +... db(i,j)*D1{i}*LAMBDA*D1{j}*E{j}' ... ); D = D + E{i}*inv(RHO)*( d(i,j)*D2_mu{i}*E{j}' +... db(i,j)*D1{j}*MU*D1{i}*E{j}' + ... D2_mu{j}*E{i}' ... ); end end obj.D = D; %=========================================%' % Numerical traction operators for BC. % Because d1 =/= e0^T*D1, the numerical tractions are different % at every boundary. % % Formula at boundary j: % tau^{j}_i = sum_k T^{j}_{ik} u_k % T_l = cell(dim,1); T_r = cell(dim,1); tau_l = cell(dim,1); tau_r = cell(dim,1); D1 = obj.D1; % Loop over boundaries for j = 1:dim T_l{j} = cell(dim,dim); T_r{j} = cell(dim,dim); tau_l{j} = cell(dim,1); tau_r{j} = cell(dim,1); LAMBDA_l = e_l{j}'*LAMBDA*e_l{j}; LAMBDA_r = e_r{j}'*LAMBDA*e_r{j}; MU_l = e_l{j}'*MU*e_l{j}; MU_r = e_r{j}'*MU*e_r{j}; [~, n_l] = size(e_l{j}); [~, n_r] = size(e_r{j}); % Loop over components for i = 1:dim tau_l{j}{i} = sparse(dim*m_tot, n_l); tau_r{j}{i} = sparse(dim*m_tot, n_r); for k = 1:dim T_l{j}{i,k} = ... (-d(i,j)*LAMBDA_l*(d(i,k)*d1_l{j}' + db(i,k)*e_l{j}'*D1{k})... -d(j,k)*MU_l*(d(i,j)*d1_l{j}' + db(i,j)*e_l{j}'*D1{i})... -d(i,k)*MU_l*d1_l{j}')'; T_r{j}{i,k} = ... (d(i,j)*LAMBDA_r*(d(i,k)*d1_r{j}' + db(i,k)*e_r{j}'*D1{k})... +d(j,k)*MU_r*(d(i,j)*d1_r{j}' + db(i,j)*e_r{j}'*D1{i})... +d(i,k)*MU_r*d1_r{j}')'; tau_l{j}{i} = tau_l{j}{i} + (T_l{j}{i,k}'*E{k}')'; tau_r{j}{i} = tau_r{j}{i} + (T_r{j}{i,k}'*E{k}')'; end end end % Traction tensors, T_ij obj.T_w = T_l{1}; obj.T_e = T_r{1}; obj.T_s = T_l{2}; obj.T_n = T_r{2}; % Restriction operators obj.e_w = e_w; obj.e_e = e_e; obj.e_s = e_s; obj.e_n = e_n; obj.e1_w = e1_w; obj.e1_e = e1_e; obj.e1_s = e1_s; obj.e1_n = e1_n; obj.e2_w = e2_w; obj.e2_e = e2_e; obj.e2_s = e2_s; obj.e2_n = e2_n; obj.e_scalar_w = e_scalar_w; obj.e_scalar_e = e_scalar_e; obj.e_scalar_s = e_scalar_s; obj.e_scalar_n = e_scalar_n; % First component of traction obj.tau1_w = tau_l{1}{1}; obj.tau1_e = tau_r{1}{1}; obj.tau1_s = tau_l{2}{1}; obj.tau1_n = tau_r{2}{1}; % Second component of traction obj.tau2_w = tau_l{1}{2}; obj.tau2_e = tau_r{1}{2}; obj.tau2_s = tau_l{2}{2}; obj.tau2_n = tau_r{2}{2}; % Traction vectors obj.tau_w = (e_w'*e1_w*obj.tau1_w')' + (e_w'*e2_w*obj.tau2_w')'; obj.tau_e = (e_e'*e1_e*obj.tau1_e')' + (e_e'*e2_e*obj.tau2_e')'; obj.tau_s = (e_s'*e1_s*obj.tau1_s')' + (e_s'*e2_s*obj.tau2_s')'; obj.tau_n = (e_n'*e1_n*obj.tau1_n')' + (e_n'*e2_n*obj.tau2_n')'; % Kroneckered norms and coefficients obj.RHOi_kron = kron(obj.RHOi, I_dim); obj.Hi_kron = kron(obj.Hi, I_dim); % Misc. obj.m = m; obj.h = h; obj.order = order; obj.grid = g; obj.dim = dim; % B, used for adjoint optimization B = []; if optFlag B = cell(dim, 1); for i = 1:dim B{i} = cell(m_tot, 1); end B0 = sparse(m_tot, m_tot); for i = 1:dim for j = 1:m_tot B{i}{j} = B0; end end ind = grid.funcToMatrix(g, 1:m_tot); % Direction 1 for k = 1:m(1) c = sparse(m(1),1); c(k) = 1; [~, B_1D] = ops{1}.D2(c); for l = 1:m(2) p = ind(:,l); B{1}{(k-1)*m(2) + l}(p, p) = B_1D; end end % Direction 2 for k = 1:m(2) c = sparse(m(2),1); c(k) = 1; [~, B_1D] = ops{2}.D2(c); for l = 1:m(1) p = ind(l,:); B{2}{(l-1)*m(2) + k}(p, p) = B_1D; end end end obj.B = B; end % Closure functions return the operators applied to the own domain to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % bc is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition % on the first component. Can also be e.g. % {'normal', 'd'} or {'tangential', 't'} for conditions on % tangential/normal component. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning) default_arg('tuning', 1.2); assert( iscell(bc), 'The BC type must be a 2x1 cell array' ); comp = bc{1}; type = bc{2}; if ischar(comp) comp = obj.getComponent(comp, boundary); end e = obj.getBoundaryOperatorForScalarField('e', boundary); tau = obj.getBoundaryOperator(['tau' num2str(comp)], boundary); T = obj.getBoundaryTractionOperator(boundary); alpha = obj.getBoundaryOperatorForScalarField('alpha', boundary); H_gamma = obj.getBoundaryQuadratureForScalarField(boundary); E = obj.E; Hi = obj.Hi; LAMBDA = obj.LAMBDA; MU = obj.MU; RHOi = obj.RHOi; dim = obj.dim; m_tot = obj.grid.N(); % Preallocate [~, col] = size(tau); closure = sparse(dim*m_tot, dim*m_tot); penalty = sparse(dim*m_tot, col); k = comp; switch type % Dirichlet boundary condition case {'D','d','dirichlet','Dirichlet'} % Loop over components that Dirichlet penalties end up on for i = 1:dim C = transpose(T{k,i}); A = -tuning*e*transpose(alpha{i,k}); B = A + e*C; closure = closure + E{i}*RHOi*Hi*B'*e*H_gamma*(e'*E{k}' ); penalty = penalty - E{i}*RHOi*Hi*B'*e*H_gamma; end % Free boundary condition case {'F','f','Free','free','traction','Traction','t','T'} closure = closure - E{k}*RHOi*Hi*e*H_gamma*tau'; penalty = penalty + E{k}*RHOi*Hi*e*H_gamma; % Unknown boundary condition otherwise error('No such boundary condition: type = %s',type); end end % type Struct that specifies the interface coupling. % Fields: % -- tuning: penalty strength, defaults to 1.2 % -- interpolation: type of interpolation, default 'none' function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) defaultType.tuning = 1.2; defaultType.interpolation = 'none'; default_struct('type', defaultType); switch type.interpolation case {'none', ''} [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); case {'op','OP'} [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); otherwise error('Unknown type of interpolation: %s ', type.interpolation); end end function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) tuning = type.tuning; % u denotes the solution in the own domain % v denotes the solution in the neighbour domain % Operators without subscripts are from the own domain. % Get boundary operators e = obj.getBoundaryOperator('e', boundary); tau = obj.getBoundaryOperator('tau', boundary); e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); tau_v = neighbour_scheme.getBoundaryOperator('tau', neighbour_boundary); H_gamma = obj.getBoundaryQuadrature(boundary); % Operators and quantities that correspond to the own domain only Hi = obj.Hi_kron; RHOi = obj.RHOi_kron; % Penalty strength operators alpha_u = 1/4*tuning*obj.getBoundaryOperator('alpha', boundary); alpha_v = 1/4*tuning*neighbour_scheme.getBoundaryOperator('alpha', neighbour_boundary); closure = -RHOi*Hi*e*H_gamma*(alpha_u' + alpha_v'*e_v*e'); penalty = RHOi*Hi*e*H_gamma*(alpha_u'*e*e_v' + alpha_v'); closure = closure - 1/2*RHOi*Hi*e*H_gamma*tau'; penalty = penalty - 1/2*RHOi*Hi*e*H_gamma*tau_v'; closure = closure + 1/2*RHOi*Hi*tau*H_gamma*e'; penalty = penalty - 1/2*RHOi*Hi*tau*H_gamma*e_v'; end function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) error('Non-conforming interfaces not implemented yet.'); end % Returns the component number that is the tangential/normal component % at the specified boundary function comp = getComponent(obj, comp_str, boundary) assertIsMember(comp_str, {'normal', 'tangential'}); assertIsMember(boundary, {'w', 'e', 's', 'n'}); switch boundary case {'w', 'e'} switch comp_str case 'normal' comp = 1; case 'tangential' comp = 2; end case {'s', 'n'} switch comp_str case 'normal' comp = 2; case 'tangential' comp = 1; end end end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string function o = getBoundaryOperator(obj, op, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2', 'alpha', 'alpha1', 'alpha2'}) switch op case {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'} o = obj.([op, '_', boundary]); % Yields vector-valued penalty strength given displacement BC on all components case 'alpha' e = obj.getBoundaryOperator('e', boundary); e_scalar = obj.getBoundaryOperatorForScalarField('e', boundary); alpha_scalar = obj.getBoundaryOperatorForScalarField('alpha', boundary); E = obj.E; [m, n] = size(alpha_scalar{1,1}); alpha = sparse(m*obj.dim, n*obj.dim); for i = 1:obj.dim for l = 1:obj.dim alpha = alpha + (e'*E{i}*e_scalar*alpha_scalar{i,l}'*E{l}')'; end end o = alpha; % Yields penalty strength for component 1 given displacement BC on all components case 'alpha1' alpha = obj.getBoundaryOperator('alpha', boundary); e = obj.getBoundaryOperator('e', boundary); e1 = obj.getBoundaryOperator('e1', boundary); alpha1 = (e1'*e*alpha')'; o = alpha1; % Yields penalty strength for component 2 given displacement BC on all components case 'alpha2' alpha = obj.getBoundaryOperator('alpha', boundary); e = obj.getBoundaryOperator('e', boundary); e2 = obj.getBoundaryOperator('e2', boundary); alpha2 = (e2'*e*alpha')'; o = alpha2; end end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string function o = getBoundaryOperatorForScalarField(obj, op, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) assertIsMember(op, {'e', 'alpha'}) switch op case 'e' o = obj.(['e_scalar', '_', boundary]); case 'alpha' % alpha{i,j} is the penalty strength on component i due to % displacement BC for component j. e = obj.getBoundaryOperatorForScalarField('e', boundary); LAMBDA = obj.LAMBDA; MU = obj.MU; dim = obj.dim; switch boundary case {'w', 'e'} k = 1; case {'s', 'n'} k = 2; end theta_R = obj.theta_R{k}; theta_H = obj.theta_H{k}; theta_M = obj.theta_M{k}; a_lambda = dim/theta_H + 1/theta_R; a_mu_i = 2/theta_M; a_mu_ij = 2/theta_H + 1/theta_R; d = @kroneckerDelta; % Kronecker delta db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta alpha_func = @(i,j) d(i,j)* a_lambda*LAMBDA ... + d(i,j)* a_mu_i*MU ... + db(i,j)*a_mu_ij*MU; alpha = cell(obj.dim, obj.dim); for i = 1:obj.dim for j = 1:obj.dim alpha{i,j} = d(i,j)*alpha_func(i,k)*e; end end o = alpha; end end % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary. % Formula: tau_i = T_ij u_j % op -- string function T = getBoundaryTractionOperator(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) T = obj.(['T', '_', boundary]); end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary unknowns % % boundary -- string function H = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) H = obj.getBoundaryQuadratureForScalarField(boundary); I_dim = speye(obj.dim, obj.dim); H = kron(H, I_dim); end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary grid points % % boundary -- string function H_b = getBoundaryQuadratureForScalarField(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) H_b = obj.(['H_', boundary]); end function N = size(obj) N = obj.dim*prod(obj.m); end end end