Mercurial > repos > public > sbplib
view +scheme/Heat2dVariable.m @ 1301:8978521b0f06 default
Fix incorrect package name.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 08 Jul 2020 19:11:04 +0200 |
parents | 8d73fcdb07a5 |
children |
line wrap: on
line source
classdef Heat2dVariable < scheme.Scheme % Discretizes the Laplacian with variable coefficent, % In the Heat equation way (i.e., the discretization matrix is not necessarily % symmetric) % u_t = div * (kappa * grad u ) % opSet should be cell array of opSets, one per dimension. This % is useful if we have periodic BC in one direction. properties m % Number of points in each direction, possibly a vector h % Grid spacing grid dim order % Order of accuracy for the approximation % Diagonal matrix for variable coefficients KAPPA % Variable coefficient D % Total operator D1 % First derivatives % Second derivatives D2_kappa H, Hi % Inner products e_l, e_r d1_l, d1_r % Normal derivatives at the boundary alpha % Vector of borrowing constants H_boundary % Boundary inner products end methods function obj = Heat2dVariable(g ,order, kappa_fun, opSet) default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); default_arg('kappa_fun', @(x,y) 0*x+1); dim = 2; assert(isa(g, 'grid.Cartesian')) kappa = grid.evalOn(g, kappa_fun); m = g.size(); m_tot = g.N(); h = g.scaling(); lim = g.lim; % 1D operators ops = cell(dim,1); for i = 1:dim ops{i} = opSet{i}(m(i), lim{i}, order); end I = cell(dim,1); D1 = cell(dim,1); D2 = cell(dim,1); H = cell(dim,1); Hi = cell(dim,1); e_l = cell(dim,1); e_r = cell(dim,1); d1_l = cell(dim,1); d1_r = cell(dim,1); for i = 1:dim I{i} = speye(m(i)); D1{i} = ops{i}.D1; D2{i} = ops{i}.D2; H{i} = ops{i}.H; Hi{i} = ops{i}.HI; e_l{i} = ops{i}.e_l; e_r{i} = ops{i}.e_r; d1_l{i} = ops{i}.d1_l; d1_r{i} = ops{i}.d1_r; end %====== Assemble full operators ======== KAPPA = spdiag(kappa); obj.KAPPA = KAPPA; obj.D1 = cell(dim,1); obj.D2_kappa = cell(dim,1); obj.e_l = cell(dim,1); obj.e_r = cell(dim,1); obj.d1_l = cell(dim,1); obj.d1_r = cell(dim,1); % D1 obj.D1{1} = kron(D1{1},I{2}); obj.D1{2} = kron(I{1},D1{2}); % Boundary operators obj.e_l{1} = kron(e_l{1},I{2}); obj.e_l{2} = kron(I{1},e_l{2}); obj.e_r{1} = kron(e_r{1},I{2}); obj.e_r{2} = kron(I{1},e_r{2}); obj.d1_l{1} = kron(d1_l{1},I{2}); obj.d1_l{2} = kron(I{1},d1_l{2}); obj.d1_r{1} = kron(d1_r{1},I{2}); obj.d1_r{2} = kron(I{1},d1_r{2}); % D2 for i = 1:dim obj.D2_kappa{i} = sparse(m_tot); end ind = grid.funcToMatrix(g, 1:m_tot); for i = 1:m(2) D_kappa = D2{1}(kappa(ind(:,i))); p = ind(:,i); obj.D2_kappa{1}(p,p) = D_kappa; end for i = 1:m(1) D_kappa = D2{2}(kappa(ind(i,:))); p = ind(i,:); obj.D2_kappa{2}(p,p) = D_kappa; end % Quadratures obj.H = kron(H{1},H{2}); obj.Hi = inv(obj.H); obj.H_boundary = cell(dim,1); obj.H_boundary{1} = H{2}; obj.H_boundary{2} = H{1}; % Differentiation matrix D (without SAT) D2_kappa = obj.D2_kappa; D1 = obj.D1; D = sparse(m_tot,m_tot); for i = 1:dim D = D + D2_kappa{i}; end obj.D = D; %=========================================% % Misc. obj.m = m; obj.h = h; obj.order = order; obj.grid = g; obj.dim = dim; obj.alpha = [ops{1}.borrowing.M.d1, ops{2}.borrowing.M.d1]; end % Closure functions return the operators applied to the own domain to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type, symmetric, tuning) default_arg('type','Neumann'); default_arg('symmetric', false); default_arg('tuning',1.2); % nj: outward unit normal component. % nj = -1 for west, south, bottom boundaries % nj = 1 for east, north, top boundaries nj = obj.getBoundarySign(boundary); Hi = obj.Hi; [e, d] = obj.getBoundaryOperator({'e', 'd'}, boundary); H_gamma = obj.getBoundaryQuadrature(boundary); alpha = obj.getBoundaryBorrowing(boundary); KAPPA = obj.KAPPA; kappa_gamma = e'*KAPPA*e; switch type % Dirichlet boundary condition case {'D','d','dirichlet','Dirichlet'} if ~symmetric closure = -nj*Hi*d*kappa_gamma*H_gamma*(e' ); penalty = nj*Hi*d*kappa_gamma*H_gamma; else closure = nj*Hi*d*kappa_gamma*H_gamma*(e' )... -tuning*2/alpha*Hi*e*kappa_gamma*H_gamma*(e' ) ; penalty = -nj*Hi*d*kappa_gamma*H_gamma ... +tuning*2/alpha*Hi*e*kappa_gamma*H_gamma; end % Free boundary condition case {'N','n','neumann','Neumann'} closure = -nj*Hi*e*kappa_gamma*H_gamma*(d' ); penalty = Hi*e*kappa_gamma*H_gamma; % penalty is for normal derivative and not for derivative, hence the sign. % Unknown boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain error('Interface not implemented'); end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string or a cell array of strings % boundary -- string function varargout = getBoundaryOperator(obj, op, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) if ~iscell(op) op = {op}; end for i = 1:numel(op) switch op{i} case 'e' switch boundary case 'w' e = obj.e_l{1}; case 'e' e = obj.e_r{1}; case 's' e = obj.e_l{2}; case 'n' e = obj.e_r{2}; end varargout{i} = e; case 'd' switch boundary case 'w' d = obj.d1_l{1}; case 'e' d = obj.d1_r{1}; case 's' d = obj.d1_l{2}; case 'n' d = obj.d1_r{2}; end varargout{i} = d; end end end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary points % % boundary -- string function H_b = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) switch boundary case 'w' H_b = obj.H_boundary{1}; case 'e' H_b = obj.H_boundary{1}; case 's' H_b = obj.H_boundary{2}; case 'n' H_b = obj.H_boundary{2}; end end % Returns the boundary sign. The right boundary is considered the positive boundary % boundary -- string function s = getBoundarySign(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) switch boundary case {'e','n'} s = 1; case {'w','s'} s = -1; end end % Returns borrowing constant gamma*h % boundary -- string function gamm = getBoundaryBorrowing(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) switch boundary case {'w','e'} gamm = obj.h(1)*obj.alpha(1); case {'s','n'} gamm = obj.h(2)*obj.alpha(2); end end function N = size(obj) N = prod(obj.m); end end end