Mercurial > repos > public > sbplib
view +util/calc_borrowing.m @ 290:d32f674bcbe5 feature/hypsyst
A first attempt to make a general scheme fo hyperbolic systems
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Fri, 16 Sep 2016 14:51:17 +0200 |
parents | 8b4993d53663 |
children | d24869abc7cd |
line wrap: on
line source
m = 100; h = 1; %% 4th order non-compatible [H, HI, D1, D2, D3, D4, e_1, e_m, M, M4,Q, Q3, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher4(m,h); S1 = S_1*S_1' + S_m*S_m'; S2 = S2_1*S2_1' + S2_m*S2_m'; S3 = S3_1*S3_1' + S3_m*S3_m'; alpha_I = util.matrixborrow(M4, h^-1*S1 ); alpha_II = util.matrixborrow(M4, h*S2 ); alpha_III = util.matrixborrow(M4, h^3*S3); fprintf('4th order non-compatible\n') fprintf('alpha_I1: %.10f\n',alpha_I) fprintf('alpha_II: %.10f\n',alpha_II) fprintf('alpha_III: %.10f\n',alpha_III) fprintf('\n') %% 6th order non-compatible [H, HI, D1, D2, D3, D4, e_1, e_m, M, M4,Q, Q3, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher6(m,h); S1 = S_1*S_1' + S_m*S_m'; S2 = S2_1*S2_1' + S2_m*S2_m'; S3 = S3_1*S3_1' + S3_m*S3_m'; alpha_II = util.matrixborrow(M4, h*S2 ); alpha_III = util.matrixborrow(M4, h^3*S3); fprintf('6th order non-compatible\n') fprintf('alpha_II: %.10f\n',alpha_II) fprintf('alpha_III: %.10f\n',alpha_III) fprintf('\n') %% 2nd order compatible [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher_compatible2(m,h); S1 = S_1*S_1' + S_m*S_m'; S2 = S2_1*S2_1' + S2_m*S2_m'; S3 = S3_1*S3_1' + S3_m*S3_m'; alpha_II = util.matrixborrow(M4, h*S2 ); alpha_III = util.matrixborrow(M4, h^3*S3); fprintf('2nd order compatible\n') fprintf('alpha_II: %.10f\n',alpha_II) fprintf('alpha_III: %.10f\n',alpha_III) fprintf('\n') %% 4th order compatible [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher_compatible4(m,h); S1 = S_1*S_1' + S_m*S_m'; S2 = S2_1*S2_1' + S2_m*S2_m'; S3 = S3_1*S3_1' + S3_m*S3_m'; alpha_II = util.matrixborrow(M4, h*S2 ); alpha_III = util.matrixborrow(M4, h^3*S3); fprintf('4th order compatible\n') fprintf('alpha_II: %.10f\n',alpha_II) fprintf('alpha_III: %.10f\n',alpha_III) fprintf('\n') %% 6th order compatible [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = sbp.higher_compatible6(m,h); S1 = S_1*S_1' + S_m*S_m'; S2 = S2_1*S2_1' + S2_m*S2_m'; S3 = S3_1*S3_1' + S3_m*S3_m'; alpha_II = util.matrixborrow(M4, h*S2 ); alpha_III = util.matrixborrow(M4, h^3*S3); fprintf('6th order compatible\n') fprintf('alpha_II: %.10f\n',alpha_II) fprintf('alpha_III: %.10f\n',alpha_III) fprintf('\n') % Ordinary for order = [2 4 6 8 10] op = sbp.Ordinary(m,h, order); S_1 = op.boundary.S_1; S_m = op.boundary.S_m; M = op.norms.M; S1 = S_1*S_1' + S_m*S_m'; alpha = util.matrixborrow(M, h*S1); fprintf('%dth order Ordinary\n', order) fprintf('alpha: %.10f\n', alpha) fprintf('\n') end