Mercurial > repos > public > sbplib
view +scheme/hypsyst2d.m @ 290:d32f674bcbe5 feature/hypsyst
A first attempt to make a general scheme fo hyperbolic systems
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Fri, 16 Sep 2016 14:51:17 +0200 |
parents | |
children | 807dfe8be3ec |
line wrap: on
line source
classdef hypsyst2d < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing x,y % Grid X,Y % Values of x and y for each grid point order % Order accuracy for the approximation D % non-stabalized scheme operator A, B, E H % Discrete norm Hi H_x, H_y % Norms in the x and y directions Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. I_x,I_y e_w, e_e, e_s, e_n params %parameters for the coeficient matrices end methods function obj = hypsyst2d(m,lim,order,matrices,params) xlim = lim{1}; ylim = lim{2}; if length(m) == 1 m = [m m]; end m_x = m(1); m_y = m(2); ops_x = sbp.D2Standard(m_x,xlim,order); ops_y = sbp.D2Standard(m_y,ylim,order); obj.x=ops_x.x; obj.y=ops_y.y; obj.X = kr(x,ones(m_y,1)); obj.Y = kr(ones(m_x,1),y); I_x = speye(m_x); I_y = speye(m_y); I_n= eye(4); D1_x = kr(kr(I_n,ops_x.D1),I_y); obj.Hi_x= kr(kr(I_n,ops_x.HI),I_y); D1_y=kr(I_n,kr(I_x,ops_y.D1)); obj.Hi_y=kr(I_n,kr(I_x,ops_y.HI)); obj.e_w=kr(I_n,kr(ops_x.e_l,I_y)); obj.e_e=kr(I_n,kr(ops_x.e_r,I_y)); obj.e_s=kr(I_n,kr(I_x,ops_y.e_l)); obj.e_n=kr(I_n,kr(I_x,ops_y.e_r)); obj.m=m; obj.h=[ops_x.h ops_y.h]; obj.order=order; obj.params=params; obj.A=matrixBuild(obj,matrices.A); obj.B=matrixBuild(obj,matrices.B); obj.E=matrixBuild(obj,matrices.E); obj.D=-obj.A*D1_x-obj.B*D1_y-E; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','neumann'); default_arg('data',0); switch type case{c,'char'} [tau,e_,Hi,CHM]=GetBoundarydata(obj,boundary,type); closure =Hi*e_*tau*CHM*e_'; penalty =Hi*e_*tau*CHM*data; otherwise error('No such boundary condition') end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('An interface function does not exist yet'); end function N = size(obj) N = obj.m; end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end function [ret]=matrixBuild(obj,mat) %extra info for coordinate transfomration mult my y_ny and %x,ny osv... params=obj.params; X=obj.X; Y=obj.Y; if isa(mat,'function_handle') matVec=mat(params,x,y); side=length(x); else matVec=mat; side=max(size(mat))/4; end ret=[diag(matVec(1,(1-1)*side+1:1*side)) diag(matVec(1,(2-1)*side+1:2*side)) diag(matVec(1,(3-1)*side+1:3*side)) diag(matVec(1,(4-1)*side+1:4*side)) diag(matVec(2,(1-1)*side+1:1*side)) diag(matVec(2,(2-1)*side+1:2*side)) diag(matVec(2,(3-1)*side+1:3*side)) diag(matVec(2,(4-1)*side+1:4*side)) diag(matVec(3,(1-1)*side+1:1*side)) diag(matVec(3,(2-1)*side+1:2*side)) diag(matVec(3,(3-1)*side+1:3*side)) diag(matVec(3,(4-1)*side+1:4*side)) diag(matVec(4,(1-1)*side+1:1*side)) diag(matVec(4,(2-1)*side+1:2*side)) diag(matVec(4,(3-1)*side+1:3*side)) diag(matVec(4,(4-1)*side+1:4*side))]; end function [tau,e_,Hi, CHM]=GetBoundarydata(obj,boundary) params=obj.params; x=obj.x; y=obj.y; side=max(length(x),length(y)); switch boundary case {'w','W','west'} e_=obj.e_w; mat=obj.A; [V,D]=matrixDiag(mat,params,x(1),y); Hi=obj.Hx; tau=zeros(4*side,pos*side); tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); CHM=V*((D+abs(D))/2)*V'; case {'e','E','east'} e_=obj.e_e; mat=obj.A; [V,D]=matrixDiag(mat,params,x(end),y); Hi=obj.Hy; tau=zeros(4*side,(4-pos)); tau(pos*side+1:4*side)=-abs(D(pos*side+1:4*side,pos*side+1:4*side)); CHM=V*((D-abs(D))/2)*V'; case {'s','S','south'} e_=obj.e_s; mat=obj.B; [V,D]=matrixDiag(mat,params,x,y(1)); Hi=obj.Hx; tau=zeros(4*side,pos*side); tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); CHM=V*((D+abs(D))/2)*V'; case {'n','N','north'} e_=obj.e_n; mat=obj.B; [V,D]=matrixDiag(mat,params,x,y(end)); Hi=obj.Hy; tau=zeros(4*side,(4-pos)); tau(pos*side+1:4*side)=-abs(D(pos*side+1:4*side,pos*side+1:4*side)); CHM=V*((D-abs(D))/2)*V'; end tau=V*tau*V'; end function [V, D,pos]=matrixDiag(mat,params,x,y) syms xs ys; [V, D]=eig(mat(params,xs,ys)); xs=1;ys=1; DD=eval(diag(D)); pos=find(DD>=0); %Now zero eigenvalues are calculated as possitive, Maybe it should not???? neg=find(DD<0); syms xs ys DD=diag(D); D=diag([DD(pos); DD(neg)]); V=[V(:,pos) V(:,neg)]; xs=x; ys=y; side=max(length(x),length(y)); Dret=zeros(4,side*4); Vret=zeros(4,side*4); for ii=1:4 for jj=1:4 Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); end end V=sparse(normc(Vret)); D=sparse(Dret); V=matrixBuild([],[],[],V); D=matrixBuild([],[],[],D); pos=legth(pos); end end end