Mercurial > repos > public > sbplib
view +scheme/Beam.m @ 176:d095b5396103 feature/beams
Fixed some bugs in Beam schemes.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 29 Feb 2016 10:16:39 +0100 |
parents | 8f22829b69d0 |
children | 5df8d20281fe |
line wrap: on
line source
classdef Beam < scheme.Scheme properties order % Order accuracy for the approximation grid D % non-stabalized scheme operator alpha H % Discrete norm Hi e_l, e_r d1_l, d1_r d2_l, d2_r d3_l, d3_r gamm delt end methods function obj = Beam(grid, order, alpha, opsGen) default_arg('alpha', 1); default_arg('opsGen', @sbp.Higher); if ~isa(grid, 'grid.Cartesian') || grid.D() ~= 1 error('Grid must be 1d cartesian'); end obj.grid = grid; obj.order = order; obj.alpha = alpha; m = grid.m; h = grid.scaling(); ops = opsGen(m, h, order); I = speye(m); D4 = sparse(ops.derivatives.D4); obj.H = sparse(ops.norms.H); obj.Hi = sparse(ops.norms.HI); obj.e_l = sparse(ops.boundary.e_1); obj.e_r = sparse(ops.boundary.e_m); obj.d1_l = sparse(ops.boundary.S_1); obj.d1_r = sparse(ops.boundary.S_m); obj.d2_l = sparse(ops.boundary.S2_1); obj.d2_r = sparse(ops.boundary.S2_m); obj.d3_l = sparse(ops.boundary.S3_1); obj.d3_r = sparse(ops.boundary.S3_m); obj.D = alpha*D4; obj.gamm = h*ops.borrowing.N.S2/2; obj.delt = h^3*ops.borrowing.N.S3/2; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty_e, penalty_d] = boundary_condition(obj,boundary,type) default_arg('type','dn'); [e, d1, d2, d3, s] = obj.get_boundary_ops(boundary); gamm = obj.gamm; delt = obj.delt; switch type case {'dn'} % Dirichlet-neumann boundary condition alpha = obj.alpha; % tau1 < -alpha^2/gamma tuning = 1.1; tau1 = tuning * alpha/delt; tau4 = s*alpha; sig2 = tuning * alpha/gamm; sig3 = -s*alpha; tau = tau1*e+tau4*d3; sig = sig2*d1+sig3*d2; closure = obj.Hi*(tau*e' + sig*d1'); penalty_e = obj.Hi*tau; penalty_d = obj.Hi*sig; otherwise % Unknown, boundary condition error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d1_u,d2_u,d3_u,s_u] = obj.get_boundary_ops(boundary); [e_v,d1_v,d2_v,d3_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); gamm_u = obj.gamm; delt_u = obj.delt; gamm_v = neighbour_scheme.gamm; delt_v = neighbour_scheme.delt; tuning = 2; alpha_u = obj.alpha; alpha_v = neighbour_scheme.alpha; tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning; % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning; tau4 = s_u*alpha_u/2; sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning; sig3 = -s_u*alpha_u/2; phi2 = s_u*1/2; psi1 = -s_u*1/2; tau = tau1*e_u + tau4*d3_u; sig = sig2*d1_u + sig3*d2_u ; phi = phi2*d1_u ; psi = psi1*e_u ; closure = obj.Hi*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); penalty = -obj.Hi*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); end % Returns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e, d1, d2, d3, s] = get_boundary_ops(obj,boundary) switch boundary case 'l' e = obj.e_l; d1 = obj.d1_l; d2 = obj.d2_l; d3 = obj.d3_l; s = -1; case 'r' e = obj.e_r; d1 = obj.d1_r; d2 = obj.d2_r; d3 = obj.d3_r; s = 1; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = prod(obj.m); end end end