Mercurial > repos > public > sbplib
view +scheme/Hypsyst3dCurve.m @ 1021:cc61dde120cd feature/advectionRV
Add upwind dissipation to the operator inside Utux2d
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 19 Dec 2018 20:00:27 +0100 |
parents | 706d1c2b4199 |
children | 0652b34f9f27 |
line wrap: on
line source
classdef Hypsyst3dCurve < scheme.Scheme properties m % Number of points in each direction, possibly a vector n %size of system h % Grid spacing X, Y, Z% Values of x and y for each grid point Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces xi,eta,zeta Xi, Eta, Zeta Eta_xi, Zeta_xi, Xi_eta, Zeta_eta, Xi_zeta, Eta_zeta % Metric terms X_xi, X_eta, X_zeta,Y_xi,Y_eta,Y_zeta,Z_xi,Z_eta,Z_zeta % Metric terms order % Order accuracy for the approximation D % non-stabalized scheme operator Aevaluated, Bevaluated, Cevaluated, Eevaluated % Numeric Coeffiecient matrices Ahat, Bhat, Chat % Symbolic Transformed Coefficient matrices A, B, C, E % Symbolic coeffiecient matrices J, Ji % JAcobian and inverse Jacobian H % Discrete norm % Norms in the x, y and z directions Hxii,Hetai,Hzetai, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hxi,Heta,Hzeta I_xi,I_eta,I_zeta, I_N,onesN e_w, e_e, e_s, e_n, e_b, e_t index_w, index_e,index_s,index_n, index_b, index_t params %parameters for the coeficient matrice end methods function obj = Hypsyst3dCurve(m, order, A, B,C, E, params,ti,operator) xilim ={0 1}; etalim = {0 1}; zetalim = {0 1}; if length(m) == 1 m = [m m m]; end m_xi = m(1); m_eta = m(2); m_zeta = m(3); m_tot = m_xi*m_eta*m_zeta; obj.params = params; obj.n = length(A(obj,0,0,0)); obj.m = m; obj.order = order; obj.onesN = ones(obj.n); switch operator case 'upwind' ops_xi = sbp.D1Upwind(m_xi,xilim,order); ops_eta = sbp.D1Upwind(m_eta,etalim,order); ops_zeta = sbp.D1Upwind(m_zeta,zetalim,order); case 'standard' ops_xi = sbp.D2Standard(m_xi,xilim,order); ops_eta = sbp.D2Standard(m_eta,etalim,order); ops_zeta = sbp.D2Standard(m_zeta,zetalim,order); otherwise error('Operator not available') end obj.xi = ops_xi.x; obj.eta = ops_eta.x; obj.zeta = ops_zeta.x; obj.Xi = kr(obj.xi,ones(m_eta,1),ones(m_zeta,1)); obj.Eta = kr(ones(m_xi,1),obj.eta,ones(m_zeta,1)); obj.Zeta = kr(ones(m_xi,1),ones(m_eta,1),obj.zeta); [X,Y,Z] = ti.map(obj.Xi,obj.Eta,obj.Zeta); obj.X = X; obj.Y = Y; obj.Z = Z; I_n = eye(obj.n); I_xi = speye(m_xi); obj.I_xi = I_xi; I_eta = speye(m_eta); obj.I_eta = I_eta; I_zeta = speye(m_zeta); obj.I_zeta = I_zeta; I_N=kr(I_n,I_xi,I_eta,I_zeta); O_xi = ones(m_xi,1); O_eta = ones(m_eta,1); O_zeta = ones(m_zeta,1); obj.Hxi = ops_xi.H; obj.Heta = ops_eta.H; obj.Hzeta = ops_zeta.H; obj.h = [ops_xi.h ops_eta.h ops_zeta.h]; switch operator case 'upwind' D1_xi = kr((ops_xi.Dp+ops_xi.Dm)/2, I_eta,I_zeta); D1_eta = kr(I_xi, (ops_eta.Dp+ops_eta.Dm)/2,I_zeta); D1_zeta = kr(I_xi, I_eta,(ops_zeta.Dp+ops_zeta.Dm)/2); otherwise D1_xi = kr(ops_xi.D1, I_eta,I_zeta); D1_eta = kr(I_xi, ops_eta.D1,I_zeta); D1_zeta = kr(I_xi, I_eta,ops_zeta.D1); end obj.A = A; obj.B = B; obj.C = C; obj.X_xi = D1_xi*X; obj.X_eta = D1_eta*X; obj.X_zeta = D1_zeta*X; obj.Y_xi = D1_xi*Y; obj.Y_eta = D1_eta*Y; obj.Y_zeta = D1_zeta*Y; obj.Z_xi = D1_xi*Z; obj.Z_eta = D1_eta*Z; obj.Z_zeta = D1_zeta*Z; obj.Ahat = @transform_coefficient_matrix; obj.Bhat = @transform_coefficient_matrix; obj.Chat = @transform_coefficient_matrix; obj.E = @(obj,x,y,z,~,~,~,~,~,~)E(obj,x,y,z); obj.Aevaluated = obj.evaluateCoefficientMatrix(obj.Ahat,obj.X, obj.Y,obj.Z, obj.X_eta,obj.X_zeta,obj.Y_eta,obj.Y_zeta,obj.Z_eta,obj.Z_zeta); obj.Bevaluated = obj.evaluateCoefficientMatrix(obj.Bhat,obj.X, obj.Y,obj.Z, obj.X_zeta,obj.X_xi,obj.Y_zeta,obj.Y_xi,obj.Z_zeta,obj.Z_xi); obj.Cevaluated = obj.evaluateCoefficientMatrix(obj.Chat,obj.X,obj.Y,obj.Z, obj.X_xi,obj.X_eta,obj.Y_xi,obj.Y_eta,obj.Z_xi,obj.Z_eta); switch operator case 'upwind' clear D1_xi D1_eta D1_zeta alphaA = max(abs(eig(obj.Ahat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_eta(end),obj.X_zeta(end),obj.Y_eta(end),obj.Y_zeta(end),obj.Z_eta(end),obj.Z_zeta(end))))); alphaB = max(abs(eig(obj.Bhat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_zeta(end),obj.X_xi(end),obj.Y_zeta(end),obj.Y_xi(end),obj.Z_zeta(end),obj.Z_xi(end))))); alphaC = max(abs(eig(obj.Chat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_xi(end),obj.X_eta(end),obj.Y_xi(end),obj.Y_eta(end),obj.Z_xi(end),obj.Z_eta(end))))); Ap = (obj.Aevaluated+alphaA*I_N)/2; Dmxi = kr(I_n, ops_xi.Dm, I_eta,I_zeta); diffSum = -Ap*Dmxi; clear Ap Dmxi Am = (obj.Aevaluated-alphaA*I_N)/2; obj.Aevaluated = []; Dpxi = kr(I_n, ops_xi.Dp, I_eta,I_zeta); temp = Am*Dpxi; diffSum = diffSum-temp; clear Am Dpxi Bp = (obj.Bevaluated+alphaB*I_N)/2; Dmeta = kr(I_n, I_xi, ops_eta.Dm,I_zeta); temp = Bp*Dmeta; diffSum = diffSum-temp; clear Bp Dmeta Bm = (obj.Bevaluated-alphaB*I_N)/2; obj.Bevaluated = []; Dpeta = kr(I_n, I_xi, ops_eta.Dp,I_zeta); temp = Bm*Dpeta; diffSum = diffSum-temp; clear Bm Dpeta Cp = (obj.Cevaluated+alphaC*I_N)/2; Dmzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dm); temp = Cp*Dmzeta; diffSum = diffSum-temp; clear Cp Dmzeta Cm = (obj.Cevaluated-alphaC*I_N)/2; clear I_N obj.Cevaluated = []; Dpzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dp); temp = Cm*Dpzeta; diffSum = diffSum-temp; clear Cm Dpzeta temp obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta... +obj.X_zeta.*obj.Y_xi.*obj.Z_eta... +obj.X_eta.*obj.Y_zeta.*obj.Z_xi... -obj.X_xi.*obj.Y_zeta.*obj.Z_eta... -obj.X_eta.*obj.Y_xi.*obj.Z_zeta... -obj.X_zeta.*obj.Y_eta.*obj.Z_xi; obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot)); obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]); obj.D = obj.Ji*diffSum-obj.Eevaluated; case 'standard' D1_xi = kr(I_n,D1_xi); D1_eta = kr(I_n,D1_eta); D1_zeta = kr(I_n,D1_zeta); obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta... +obj.X_zeta.*obj.Y_xi.*obj.Z_eta... +obj.X_eta.*obj.Y_zeta.*obj.Z_xi... -obj.X_xi.*obj.Y_zeta.*obj.Z_eta... -obj.X_eta.*obj.Y_xi.*obj.Z_zeta... -obj.X_zeta.*obj.Y_eta.*obj.Z_xi; obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot)); obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]); obj.D = obj.Ji*(-obj.Aevaluated*D1_xi-obj.Bevaluated*D1_eta -obj.Cevaluated*D1_zeta)-obj.Eevaluated; otherwise error('Operator not supported') end obj.Hxii = kr(I_n, ops_xi.HI, I_eta,I_zeta); obj.Hetai = kr(I_n, I_xi, ops_eta.HI,I_zeta); obj.Hzetai = kr(I_n, I_xi,I_eta, ops_zeta.HI); obj.index_w = (kr(ops_xi.e_l, O_eta,O_zeta)==1); obj.index_e = (kr(ops_xi.e_r, O_eta,O_zeta)==1); obj.index_s = (kr(O_xi, ops_eta.e_l,O_zeta)==1); obj.index_n = (kr(O_xi, ops_eta.e_r,O_zeta)==1); obj.index_b = (kr(O_xi, O_eta, ops_zeta.e_l)==1); obj.index_t = (kr(O_xi, O_eta, ops_zeta.e_r)==1); obj.e_w = kr(I_n, ops_xi.e_l, I_eta,I_zeta); obj.e_e = kr(I_n, ops_xi.e_r, I_eta,I_zeta); obj.e_s = kr(I_n, I_xi, ops_eta.e_l,I_zeta); obj.e_n = kr(I_n, I_xi, ops_eta.e_r,I_zeta); obj.e_b = kr(I_n, I_xi, I_eta, ops_zeta.e_l); obj.e_t = kr(I_n, I_xi, I_eta, ops_zeta.e_r); obj.Eta_xi = kr(obj.eta,ones(m_xi,1)); obj.Zeta_xi = kr(ones(m_eta,1),obj.zeta); obj.Xi_eta = kr(obj.xi,ones(m_zeta,1)); obj.Zeta_eta = kr(ones(m_xi,1),obj.zeta); obj.Xi_zeta = kr(obj.xi,ones(m_eta,1)); obj.Eta_zeta = kr(ones(m_zeta,1),obj.eta); end function [ret] = transform_coefficient_matrix(obj,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2) ret = obj.A(obj,x,y,z).*(y_1.*z_2-z_1.*y_2); ret = ret+obj.B(obj,x,y,z).*(x_2.*z_1-x_1.*z_2); ret = ret+obj.C(obj,x,y,z).*(x_1.*y_2-x_2.*y_1); end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. function [closure, penalty] = boundary_condition(obj,boundary,type,L) default_arg('type','char'); BM = boundary_matrices(obj,boundary); switch type case{'c','char'} [closure,penalty] = boundary_condition_char(obj,BM); case{'general'} [closure,penalty] = boundary_condition_general(obj,BM,boundary,L); otherwise error('No such boundary condition') end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) error('Not implemented'); end function N = size(obj) N = obj.m; end % Evaluates the symbolic Coeffiecient matrix mat function [ret] = evaluateCoefficientMatrix(obj,mat, X, Y, Z , x_1 , x_2 , y_1 , y_2 , z_1 , z_2) params = obj.params; side = max(length(X),length(Y)); if isa(mat,'function_handle') [rows,cols] = size(mat(obj,0,0,0,0,0,0,0,0,0)); x_1 = kr(obj.onesN,x_1); x_2 = kr(obj.onesN,x_2); y_1 = kr(obj.onesN,y_1); y_2 = kr(obj.onesN,y_2); z_1 = kr(obj.onesN,z_1); z_2 = kr(obj.onesN,z_2); matVec = mat(obj,X',Y',Z',x_1',x_2',y_1',y_2',z_1',z_2'); matVec = sparse(matVec); else matVec = mat; [rows,cols] = size(matVec); side = max(length(X),length(Y)); cols = cols/side; end matVec(abs(matVec)<10^(-10)) = 0; ret = cell(rows,cols); for ii = 1:rows for jj = 1:cols ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side)); end end ret = cell2mat(ret); end function [BM] = boundary_matrices(obj,boundary) params = obj.params; BM.boundary = boundary; switch boundary case {'w','W','west'} BM.e_ = obj.e_w; mat = obj.Ahat; BM.boundpos = 'l'; BM.Hi = obj.Hxii; BM.index = obj.index_w; BM.x_1 = obj.X_eta(BM.index); BM.x_2 = obj.X_zeta(BM.index); BM.y_1 = obj.Y_eta(BM.index); BM.y_2 = obj.Y_zeta(BM.index); BM.z_1 = obj.Z_eta(BM.index); BM.z_2 = obj.Z_zeta(BM.index); case {'e','E','east'} BM.e_ = obj.e_e; mat = obj.Ahat; BM.boundpos = 'r'; BM.Hi = obj.Hxii; BM.index = obj.index_e; BM.x_1 = obj.X_eta(BM.index); BM.x_2 = obj.X_zeta(BM.index); BM.y_1 = obj.Y_eta(BM.index); BM.y_2 = obj.Y_zeta(BM.index); BM.z_1 = obj.Z_eta(BM.index); BM.z_2 = obj.Z_zeta(BM.index); case {'s','S','south'} BM.e_ = obj.e_s; mat = obj.Bhat; BM.boundpos = 'l'; BM.Hi = obj.Hetai; BM.index = obj.index_s; BM.x_1 = obj.X_zeta(BM.index); BM.x_2 = obj.X_xi(BM.index); BM.y_1 = obj.Y_zeta(BM.index); BM.y_2 = obj.Y_xi(BM.index); BM.z_1 = obj.Z_zeta(BM.index); BM.z_2 = obj.Z_xi(BM.index); case {'n','N','north'} BM.e_ = obj.e_n; mat = obj.Bhat; BM.boundpos = 'r'; BM.Hi = obj.Hetai; BM.index = obj.index_n; BM.x_1 = obj.X_zeta(BM.index); BM.x_2 = obj.X_xi(BM.index); BM.y_1 = obj.Y_zeta(BM.index); BM.y_2 = obj.Y_xi(BM.index); BM.z_1 = obj.Z_zeta(BM.index); BM.z_2 = obj.Z_xi(BM.index); case{'b','B','Bottom'} BM.e_ = obj.e_b; mat = obj.Chat; BM.boundpos = 'l'; BM.Hi = obj.Hzetai; BM.index = obj.index_b; BM.x_1 = obj.X_xi(BM.index); BM.x_2 = obj.X_eta(BM.index); BM.y_1 = obj.Y_xi(BM.index); BM.y_2 = obj.Y_eta(BM.index); BM.z_1 = obj.Z_xi(BM.index); BM.z_2 = obj.Z_eta(BM.index); case{'t','T','Top'} BM.e_ = obj.e_t; mat = obj.Chat; BM.boundpos = 'r'; BM.Hi = obj.Hzetai; BM.index = obj.index_t; BM.x_1 = obj.X_xi(BM.index); BM.x_2 = obj.X_eta(BM.index); BM.y_1 = obj.Y_xi(BM.index); BM.y_2 = obj.Y_eta(BM.index); BM.z_1 = obj.Z_xi(BM.index); BM.z_2 = obj.Z_eta(BM.index); end [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(BM.index),obj.Y(BM.index),obj.Z(BM.index),... BM.x_1,BM.x_2,BM.y_1,BM.y_2,BM.z_1,BM.z_2); BM.side = sum(BM.index); BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3); end % Characteristic boundary condition function [closure, penalty] = boundary_condition_char(obj,BM) side = BM.side; pos = BM.pos; neg = BM.neg; zeroval = BM.zeroval; V = BM.V; Vi = BM.Vi; Hi = BM.Hi; D = BM.D; e_ = BM.e_; switch BM.boundpos case {'l'} tau = sparse(obj.n*side,pos); Vi_plus = Vi(1:pos,:); tau(1:pos,:) = -abs(D(1:pos,1:pos)); closure = Hi*e_*V*tau*Vi_plus*e_'; penalty = -Hi*e_*V*tau*Vi_plus; case {'r'} tau = sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); closure = Hi*e_*V*tau*Vi_minus*e_'; penalty = -Hi*e_*V*tau*Vi_minus; end end % General boundary condition in the form Lu=g(x) function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L) side = BM.side; pos = BM.pos; neg = BM.neg; zeroval = BM.zeroval; V = BM.V; Vi = BM.Vi; Hi = BM.Hi; D = BM.D; e_ = BM.e_; index = BM.index; switch BM.boundary case{'b','B','bottom'} Ji_vec = diag(obj.Ji); Ji = diag(Ji_vec(index)); Zeta_x = Ji*(obj.Y_xi(index).*obj.Z_eta(index)-obj.Z_xi(index).*obj.Y_eta(index)); Zeta_y = Ji*(obj.X_eta(index).*obj.Z_xi(index)-obj.X_xi(index).*obj.Z_eta(index)); Zeta_z = Ji*(obj.X_xi(index).*obj.Y_eta(index)-obj.Y_xi(index).*obj.X_eta(index)); L = obj.evaluateCoefficientMatrix(L,Zeta_x,Zeta_y,Zeta_z,[],[],[],[],[],[]); end switch BM.boundpos case {'l'} tau = sparse(obj.n*side,pos); Vi_plus = Vi(1:pos,:); Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); V_plus = V(:,1:pos); V_minus = V(:,(pos+zeroval)+1:obj.n*side); tau(1:pos,:) = -abs(D(1:pos,1:pos)); R = -inv(L*V_plus)*(L*V_minus); closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; case {'r'} tau = sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_plus = Vi(1:pos,:); Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); V_plus = V(:,1:pos); V_minus = V(:,(pos+zeroval)+1:obj.n*side); R = -inv(L*V_minus)*(L*V_plus); closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; end end % Function that diagonalizes a symbolic matrix A as A=V*D*Vi % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign % [d+ ] % D = [ d0 ] % [ d-] % signVec is a vector specifying the number of possitive, zero and negative eigenvalues of D function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2) params = obj.params; eps = 10^(-10); if(sum(abs(x_1))>eps) syms x_1s else x_1s = 0; end if(sum(abs(x_2))>eps) syms x_2s; else x_2s = 0; end if(sum(abs(y_1))>eps) syms y_1s else y_1s = 0; end if(sum(abs(y_2))>eps) syms y_2s; else y_2s = 0; end if(sum(abs(z_1))>eps) syms z_1s else z_1s = 0; end if(sum(abs(z_2))>eps) syms z_2s; else z_2s = 0; end syms xs ys zs [V, D] = eig(mat(obj,xs,ys,zs,x_1s,x_2s,y_1s,y_2s,z_1s,z_2s)); Vi = inv(V); xs = x; ys = y; zs = z; x_1s = x_1; x_2s = x_2; y_1s = y_1; y_2s = y_2; z_1s = z_1; z_2s = z_2; side = max(length(x),length(y)); Dret = zeros(obj.n,side*obj.n); Vret = zeros(obj.n,side*obj.n); Viret = zeros(obj.n,side*obj.n); for ii=1:obj.n for jj=1:obj.n Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); end end D = sparse(Dret); V = sparse(Vret); Vi = sparse(Viret); V = obj.evaluateCoefficientMatrix(V,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); D = obj.evaluateCoefficientMatrix(D,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); Vi = obj.evaluateCoefficientMatrix(Vi,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); DD = diag(D); poseig = (DD>0); zeroeig = (DD==0); negeig = (DD<0); D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; end end end