Mercurial > repos > public > sbplib
view +time/+rk/rungekutta_6RV.m @ 846:c6fcee3fcf1b feature/burgers1d
Add generalized RungeKutta and RungeKuttaRV class which extracts its coefficients from a butcher tableau, specified on the scheme.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 20 Sep 2018 17:51:19 +0200 |
parents | +time/+rk4/rungekutta_6RV.m@1e057b0f2fed |
children |
line wrap: on
line source
% Takes one time step of size dt using the rungekutta method % starting from v_0 and where the function F(v,t) gives the % time derivatives. function v = rungekutta_6RV(v, t , dt, F, RV) s = 7; k = zeros(length(v),s); a = zeros(7,6); c = [0, 4/7, 5/7, 6/7, (5-sqrt(5))/10, (5+sqrt(5))/10, 1]; b = [1/12, 0, 0, 0, 5/12, 5/12, 1/12]; a = [ 0, 0, 0, 0, 0, 0; 4/7, 0, 0, 0, 0, 0; 115/112, -5/16, 0, 0, 0, 0; 589/630, 5/18, -16/45, 0, 0, 0; 229/1200 - 29/6000*sqrt(5), 119/240 - 187/1200*sqrt(5), -14/75 + 34/375*sqrt(5), -3/100*sqrt(5), 0, 0; 71/2400 - 587/12000*sqrt(5), 187/480 - 391/2400*sqrt(5), -38/75 + 26/375*sqrt(5), 27/80 - 3/400*sqrt(5), (1+sqrt(5))/4, 0; -49/480 + 43/160*sqrt(5), -425/96 + 51/32*sqrt(5), 52/15 - 4/5*sqrt(5), -27/16 + 3/16*sqrt(5), 5/4 - 3/4*sqrt(5), 5/2 - 1/2*sqrt(5); ]; k(:,1) = F(v,t,RV.getViscosity()); for i = 2:s u = v; for j = 1:i-1 u = u + dt*a(i,j)*k(:,j); end RV.update(u,v,c(i)*dt); k(:,i) = F(u,t+c(i)*dt,RV.getViscosity()); end u = v; for i = 1:s u = u + dt*b(i)*k(:,i); end RV.update(u,v,dt); v = u; end