Mercurial > repos > public > sbplib
view +scheme/Euler1d.m @ 6:c3c95b7a1a1c
Added version function sbplibVersion.m
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 21 Sep 2015 10:05:21 +0200 |
parents | 48b6fb693025 |
children | 8f0c2dc747dd |
line wrap: on
line source
classdef SchmBeam2d < noname.Scheme properties m % Number of points in each direction, possibly a vector N % Number of points total h % Grid spacing u % Grid values x % Values of x and y for each order % Order accuracy for the approximation D % non-stabalized scheme operator M % Derivative norm alpha H % Discrete norm Hi e_l, e_r end methods function obj = SchmBeam2d(m,xlim,order,gamma,opsGen) default_arg('opsGen',@sbp.Ordinary); default_arg('gamma', 1.4); [x, h] = util.get_grid(xlim{:},m_x); ops = opsGen(m_x,h_x,order); I_x = speye(m); I_3 = speye(3); D1 = sparse(ops.derivatives.D1); H = sparse(ops.norms.H); Hi = sparse(ops.norms.HI); e_l = sparse(ops.boundary.e_1); e_r = sparse(ops.boundary.e_m); D1 = kr(D1, I_3); % Norms obj.H = kr(H,I_3); % Boundary operators obj.e_l = kr(e_l,I_3); obj.e_r = kr(e_r,I_3); obj.m = m; obj.h = h; obj.order = order; % Man har Q_t+F_x=0 i 1D Euler, där % q=[rho, rho*u, e]^T % F=[rho*u, rho*u^2+p, (e+p)*u] ^T % p=(gamma-1)*(e-rho/2*u^2); %Solving on form q_t + F_x = 0 function o = F(q) o = [q(2); q(2).^2/q(1) + p(q); (q(3)+p(q))*q(2)/q(1)]; end % Equation of state function o = p(q) o = (gamma-1)*(q(3)-q(2).^2/q(1)/2); end % R = % [sqrt(2*(gamma-1))*rho , rho , rho ; % sqrt(2*(gamma-1))*rho*u , rho*(u+c) , rho*(u-c) ; % sqrt(2*(gamma-1))*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c, e+(gamma-1)*(e-rho*u^2/2)-rho*u*c]); function o = R(q) rho = q(1); u = q(2)/q(1); e = q(3); sqrt2gamm = sqrt(2*(gamma-1)); o = [ sqrt2gamm*rho , rho , rho ; sqrt2gamm*rho*u , rho*(u+c) , rho*(u-c) ; sqrt2gamm*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c , e+(gamma-1)*(e-rho*u^2/2)-rho*u*c ]; end function o = Fx(q) o = zeros(size(q)); for i = 1:3:3*m o(i:i+2) = F(q(i:i+2)); end end % A=R*Lambda*inv(R), där Lambda=diag(u, u+c, u-c) (c är ljudhastigheten) % c^2=gamma*p/rho % function o = A(rho,u,e) % end obj.D = @Fx; obj.u = x; obj.x = kr(x,ones(3,1)); end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary, alpha,data) default_arg('alpha',0); default_arg('data',0); % Boundary condition on form % w_in = w_out + g, where g is data [e,s] = obj.get_boundary_ops(boundary); tuning = 1; % ????????????????????????? tau = R(q)*lambda(q)*tuning; % SHOULD THIS BE abs(lambda)????? function closure_fun(q,t) q_b = e * q; end function penalty_fun(q,t) end % tau1 < -alpha^2/gamma tau1 = tuning * alpha/delt; tau4 = s*alpha; sig2 = tuning * alpha/gamm; sig3 = -s*alpha; tau = tau1*e+tau4*d3; sig = sig2*d1+sig3*d2; closure = halfnorm_inv*(tau*e' + sig*d1'); pp_e = halfnorm_inv*tau; pp_d = halfnorm_inv*sig; switch class(data) case 'double' penalty_e = pp_e*data; penalty_d = pp_d*data; case 'function_handle' penalty_e = @(t)pp_e*data(t); penalty_d = @(t)pp_d*data(t); otherwise error('Wierd data argument!') end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary); [e_v,d1_v,d2_v,d3_v,s_v,gamm_v,delt_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); tuning = 2; alpha_u = obj.alpha; alpha_v = neighbour_scheme.alpha; tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning; % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning; tau4 = s_u*alpha_u/2; sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning; sig3 = -s_u*alpha_u/2; phi2 = s_u*1/2; psi1 = -s_u*1/2; tau = tau1*e_u + tau4*d3_u; sig = sig2*d1_u + sig3*d2_u ; phi = phi2*d1_u ; psi = psi1*e_u ; closure = halfnorm_inv*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); penalty = -halfnorm_inv*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e,d1,d2,d3,s,gamm, delt, halfnorm_inv] = get_boundary_ops(obj,boundary) switch boundary case 'w' e = obj.e_w; d1 = obj.d1_w; d2 = obj.d2_w; d3 = obj.d3_w; s = -1; gamm = obj.gamm_x; delt = obj.delt_x; halfnorm_inv = obj.Hix; case 'e' e = obj.e_e; d1 = obj.d1_e; d2 = obj.d2_e; d3 = obj.d3_e; s = 1; gamm = obj.gamm_x; delt = obj.delt_x; halfnorm_inv = obj.Hix; case 's' e = obj.e_s; d1 = obj.d1_s; d2 = obj.d2_s; d3 = obj.d3_s; s = -1; gamm = obj.gamm_y; delt = obj.delt_y; halfnorm_inv = obj.Hiy; case 'n' e = obj.e_n; d1 = obj.d1_n; d2 = obj.d2_n; d3 = obj.d3_n; s = 1; gamm = obj.gamm_y; delt = obj.delt_y; halfnorm_inv = obj.Hiy; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = prod(obj.m); end end end