Mercurial > repos > public > sbplib
view +sbp/+implementations/d2_noneq_variable_4.m @ 1326:c2d716c4f1ed feature/D2_boundary_opt
Fix bug when using wide stencils
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 13 Feb 2022 20:58:35 +0100 |
parents | 1b0f2415237f |
children | 855871e0b852 |
line wrap: on
line source
function [H, HI, D1, D2, DI] = d2_noneq_variable_4(N, h, options) % N: Number of grid points % h: grid spacing % options: struct containing options for constructing the operator % current options are: % options.stencil_type ('minimal','nonminimal','wide') % options.AD ('upwind', 'op') % BP: Number of boundary points % order: Accuracy of interior stencil BP = 4; order = 4; %%%% Norm matrix %%%%%%%% P = zeros(BP, 1); P0 = 2.1259737557798e-01; P1 = 1.0260290400758e+00; P2 = 1.0775123588954e+00; P3 = 9.8607273802835e-01; for i = 0:BP - 1 P(i + 1) = eval(['P' num2str(i)]); end Hv = ones(N, 1); Hv(1:BP) = P; Hv(end - BP + 1:end) = flip(P); Hv = h * Hv; H = spdiags(Hv, 0, N, N); HI = spdiags(1 ./ Hv, 0, N, N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% d = [1/12, -2/3, 0, 2/3, -1/12]; d = repmat(d, N, 1); Q = spdiags(d, -order / 2:order / 2, N, N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.5605279837843e-01; Q0_2 = -1.9875859409017e-01; Q0_3 = 4.2705795711740e-02; Q0_4 = 0.0000000000000e+00; Q0_5 = 0.0000000000000e+00; Q1_0 = -6.5605279837843e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 8.1236966439895e-01; Q1_3 = -1.5631686602052e-01; Q1_4 = 0.0000000000000e+00; Q1_5 = 0.0000000000000e+00; Q2_0 = 1.9875859409017e-01; Q2_1 = -8.1236966439895e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 6.9694440364211e-01; Q2_4 = -8.3333333333333e-02; Q2_5 = 0.0000000000000e+00; Q3_0 = -4.2705795711740e-02; Q3_1 = 1.5631686602052e-01; Q3_2 = -6.9694440364211e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 6.6666666666667e-01; Q3_5 = -8.3333333333333e-02; for i = 1:BP for j = 1:BP Q(i, j) = eval(['Q' num2str(i - 1) '_' num2str(j - 1)]); Q(N + 1 - i, N + 1 - j) = -eval(['Q' num2str(i - 1) '_' num2str(j - 1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Undivided difference operators %%%% % Closed with zeros at the first boundary nodes. m = N; DD_2 = (diag(ones(m - 1, 1), -1) - 2 * diag(ones(m, 1), 0) + diag(ones(m - 1, 1), 1)); DD_2(1:3, 1:4) = [0 0 0 0; 0.16138369498429727170e1 -0.26095138364100825853e1 0.99567688656710986834e0 0; 0 0.84859980956172494512e0 -0.17944203477786665350e1 0.94582053821694158989e0; ]; DD_2(m - 2:m, m - 3:m) = [0.94582053821694158989e0 -0.17944203477786665350e1 0.84859980956172494512e0 0; 0 0.99567688656710986834e0 -0.26095138364100825853e1 0.16138369498429727170e1; 0 0 0 0; ]; DD_2 = sparse(DD_2); DD_3 = (-diag(ones(m - 2, 1), -2) + 3 * diag(ones(m - 1, 1), -1) - 3 * diag(ones(m, 1), 0) + diag(ones(m - 1, 1), 1)); DD_3(1:4, 1:5) = [0 0 0 0 0; 0 0 0 0 0; -0.17277463987989539852e1 0.37021976718569105700e1 -0.29870306597013296050e1 0.10125793866433730203e1 0; 0 -0.81738495424057284493e0 0.26916305216679998025e1 -0.28374616146508247697e1 0.96321604722339781208e0; ]; DD_3(m - 2:m, m - 4:m) = [-0.96321604722339781208e0 0.28374616146508247697e1 -0.26916305216679998025e1 0.81738495424057284493e0 0; 0 -0.10125793866433730203e1 0.29870306597013296050e1 -0.37021976718569105700e1 0.17277463987989539852e1; 0 0 0 0 0; ]; DD_3 = sparse(DD_3); DD_4 = (diag(ones(m - 2, 1), 2) - 4 * diag(ones(m - 1, 1), 1) + 6 * diag(ones(m, 1), 0) - 4 * diag(ones(m - 1, 1), -1) + diag(ones(m - 2, 1), -2)); DD_4(1:4, 1:6) = [0 0 0 0 0 0; 0 0 0 0 0 0; 0.18176226052481525189e1 -0.47546882767009058782e1 0.59740613194026592100e1 -0.40503175465734920811e1 0.10133218986235862303e1 0; 0 0.79462567299107735362e0 -0.35888406955573330700e1 0.56749232293016495393e1 -0.38528641888935912483e1 0.97215598215819742539e0; ]; DD_4(m - 3:m, m - 5:m) = [0.97215598215819742539e0 -0.38528641888935912483e1 0.56749232293016495393e1 -0.35888406955573330700e1 0.79462567299107735362e0 0; 0 0.10133218986235862303e1 -0.40503175465734920811e1 0.59740613194026592100e1 -0.47546882767009058782e1 0.18176226052481525189e1; 0 0 0 0 0 0; 0 0 0 0 0 0; ]; DD_4 = sparse(DD_4); %%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operators %%% D1 = H \ Q; % Helper functions for constructing D2(c) % TODO: Consider changing sparse(diag(...)) to spdiags(....) % Minimal 5 point stencil width function D2 = D2_fun_minimal(c) % Here we add variable diffusion C1 = sparse(diag(c)); C2 = 1/2 * diag(ones(m - 1, 1), -1) + 1/2 * diag(ones(m, 1), 0); C2(1, 2) = 1/2; C2 = sparse(diag(C2 * c)); % Remainder term added to wide second drivative opereator, to obtain a 5 % point narrow stencil. R = (1/144 / h) * transpose(DD_4) * C1 * DD_4 + (1/18 / h) * transpose(DD_3) * C2 * DD_3; D2 = D1 * C1 * D1 - H \ R; end % Few additional grid point in interior stencil cmp. to minimal function D2 = D2_fun_nonminimal(c) % Here we add variable diffusion C1 = sparse(diag(c)); % Remainder term added to wide second derivative operator R = (1/144 / h) * transpose(DD_4) * C1 * DD_4; D2 = D1 * C1 * D1 - H \ R; end % Wide stencil function D2 = D2_fun_wide(c) % Here we add variable diffusion C1 = sparse(diag(c)); D2 = D1 * C1 * D1; end switch options.stencil_width case 'minimal' D2 = @D2_fun_minimal; case 'nonminimal' D2 = @D2_fun_nonminimal; case 'wide' D2 = @D2_fun_wide; otherwise error('No option %s for stencil width', options.stencil_width) end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Artificial dissipation operator %%% switch options.AD case 'upwind' % This is the choice that yield 3rd order Upwind DI = H \ (transpose(DD_2) * DD_2) * (-1/12); case 'op' % This choice will preserve the order of the underlying % Non-dissipative D1 SBP operator DI = H \ (transpose(DD_3) * DD_3) * (-1 / (5 * 12)); otherwise error("Artificial dissipation options '%s' not implemented.", option.AD) end %%%%%%%%%%%%%%%%%%%%%%%%%%% end