Mercurial > repos > public > sbplib
view +sbp/D1Nonequidistant.m @ 266:bfa130b7abf6 operator_remake
Added error message for too few grid points to all implementation files.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Fri, 09 Sep 2016 11:03:13 +0200 |
parents | 8a625c5a3633 |
children | 4b9310edcdf8 |
line wrap: on
line source
classdef D1Nonequidistant < sbp.OpSet properties D1 % SBP operator approximating first derivative H % Norm matrix HI % H^-1 Q % Skew-symmetric matrix e_1 % Left boundary operator e_m % Right boundary operator m % Number of grid points. h % Step size x % grid borrowing % Struct with borrowing limits for different norm matrices end methods function obj = D1Nonequidistant(m,lim,order,option) default_arg('option','Accurate'); % 'Accurate' operators are optimized for accuracy % 'Minimal' operators have the smallest possible boundary % closure x_l = lim{1}; x_r = lim{2}; L = x_r-x_l; switch option case {'Accurate','accurate','A'} if order == 4 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_4(m,L); elseif order == 6 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_6(m,L); elseif order == 8 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_8(m,L); elseif order == 10 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_10(m,L); elseif order == 12 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_12(m,L); else error('Invalid operator order %d.',order); end case {'Minimal','minimal','M'} if order == 4 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_minimal_4(m,L); elseif order == 6 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_minimal_6(m,L); elseif order == 8 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_minimal_8(m,L); elseif order == 10 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_minimal_10(m,L); elseif order == 12 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_minimal_12(m,L); else error('Invalid operator order %d.',order); end end obj.x = obj.x + x_l; obj.e_1 = sparse(m,1); obj.e_m = sparse(m,1); obj.e_1(1) = 1; obj.e_m(m) = 1; obj.HI = inv(obj.H); obj.Q = obj.H*obj.D1 - obj.e_m*obj.e_m' + obj.e_0*obj.e_0'; obj.borrowing = []; end end end