Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_noneq_minimal_4.m @ 266:bfa130b7abf6 operator_remake
Added error message for too few grid points to all implementation files.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Fri, 09 Sep 2016 11:03:13 +0200 |
parents | 6009f2712d13 |
children | f7ac3cd6eeaa |
line wrap: on
line source
function [D1,H,x,h] = d1_noneq_minimal_4(N,L) % L: Domain length % N: Number of grid points if(nargin < 2) L = 1; end if(N<6) error('Operator requires at least 6 grid points'); end % BP: Number of boundary points % m: Number of nonequidistant spacings % order: Accuracy of interior stencil BP = 3; m = 1; order = 4; %%%% Non-equidistant grid points %%%%% x0 = 0.0000000000000e+00; x1 = 7.7122987842562e-01; x2 = 1.7712298784256e+00; x3 = 2.7712298784256e+00; xb = zeros(m+1,1); for i = 0:m xb(i+1) = eval(['x' num2str(i)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Compute h %%%%%%%%%% h = L/(2*xb(end) + N-1-2*m); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Define grid %%%%%%%% x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix %%%%%%%% P = zeros(BP,1); %#ok<*NASGU> P0 = 2.6864248295847e-01; P1 = 1.0094667153500e+00; P2 = 9.9312068011715e-01; for i = 0:BP-1 P(i+1) = eval(['P' num2str(i)]); end H = ones(N,1); H(1:BP) = P; H(end-BP+1:end) = flip(P); H = spdiags(h*H,0,N,N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil switch order case 2 d = [-1/2,0,1/2]; case 4 d = [1/12,-2/3,0,2/3,-1/12]; case 6 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; case 8 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; case 10 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; case 12 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; end d = repmat(d,N,1); Q = spdiags(d,-order/2:order/2,N,N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.1697245625434e-01; Q0_2 = -1.1697245625434e-01; Q0_3 = 0.0000000000000e+00; Q0_4 = 0.0000000000000e+00; Q1_0 = -6.1697245625434e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 7.0030578958767e-01; Q1_3 = -8.3333333333333e-02; Q1_4 = 0.0000000000000e+00; Q2_0 = 1.1697245625434e-01; Q2_1 = -7.0030578958767e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 6.6666666666667e-01; Q2_4 = -8.3333333333333e-02; for i = 1:BP for j = 1:BP Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operator %% D1 = H\Q; %%%%%%%%%%%%%%%%%%%%%%%%%%%