Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_noneq_8.m @ 266:bfa130b7abf6 operator_remake
Added error message for too few grid points to all implementation files.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Fri, 09 Sep 2016 11:03:13 +0200 |
parents | 6009f2712d13 |
children | f7ac3cd6eeaa |
line wrap: on
line source
function [D1,H,x,h] = d1_noneq_8(N,L) % L: Domain length % N: Number of grid points if(nargin < 2) L = 1; end if(N<16) error('Operator requires at least 16 grid points'); end % BP: Number of boundary points % m: Number of nonequidistant spacings % order: Accuracy of interior stencil BP = 8; m = 4; order = 8; %%%% Non-equidistant grid points %%%%% x0 = 0.0000000000000e+00; x1 = 3.8118550247622e-01; x2 = 1.1899550868338e+00; x3 = 2.2476300175641e+00; x4 = 3.3192851303204e+00; x5 = 4.3192851303204e+00; x6 = 5.3192851303204e+00; x7 = 6.3192851303204e+00; x8 = 7.3192851303204e+00; xb = zeros(m+1,1); for i = 0:m xb(i+1) = eval(['x' num2str(i)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Compute h %%%%%%%%%% h = L/(2*xb(end) + N-1-2*m); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Define grid %%%%%%%% x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix %%%%%%%% P = zeros(BP,1); %#ok<*NASGU> P0 = 1.0758368078310e-01; P1 = 6.1909685107891e-01; P2 = 9.6971176519117e-01; P3 = 1.1023441350947e+00; P4 = 1.0244688965833e+00; P5 = 9.9533550116831e-01; P6 = 1.0008236941028e+00; P7 = 9.9992060631812e-01; for i = 0:BP-1 P(i+1) = eval(['P' num2str(i)]); end H = ones(N,1); H(1:BP) = P; H(end-BP+1:end) = flip(P); H = spdiags(h*H,0,N,N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil switch order case 2 d = [-1/2,0,1/2]; case 4 d = [1/12,-2/3,0,2/3,-1/12]; case 6 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; case 8 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; case 10 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; case 12 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; end d = repmat(d,N,1); Q = spdiags(d,-order/2:order/2,N,N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.7284756079369e-01; Q0_2 = -2.5969732837062e-01; Q0_3 = 1.3519390385721e-01; Q0_4 = -6.9678474730984e-02; Q0_5 = 2.6434024071371e-02; Q0_6 = -5.5992311465618e-03; Q0_7 = 4.9954552590464e-04; Q0_8 = 0.0000000000000e+00; Q0_9 = 0.0000000000000e+00; Q0_10 = 0.0000000000000e+00; Q0_11 = 0.0000000000000e+00; Q1_0 = -6.7284756079369e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 9.4074021172233e-01; Q1_3 = -4.0511642426516e-01; Q1_4 = 1.9369192209331e-01; Q1_5 = -6.8638079843479e-02; Q1_6 = 1.3146457241484e-02; Q1_7 = -9.7652615479254e-04; Q1_8 = 0.0000000000000e+00; Q1_9 = 0.0000000000000e+00; Q1_10 = 0.0000000000000e+00; Q1_11 = 0.0000000000000e+00; Q2_0 = 2.5969732837062e-01; Q2_1 = -9.4074021172233e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 9.4316393361096e-01; Q2_4 = -3.5728039257451e-01; Q2_5 = 1.1266686855013e-01; Q2_6 = -1.8334941452280e-02; Q2_7 = 8.2741521740941e-04; Q2_8 = 0.0000000000000e+00; Q2_9 = 0.0000000000000e+00; Q2_10 = 0.0000000000000e+00; Q2_11 = 0.0000000000000e+00; Q3_0 = -1.3519390385721e-01; Q3_1 = 4.0511642426516e-01; Q3_2 = -9.4316393361096e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 8.7694387866575e-01; Q3_5 = -2.4698058719506e-01; Q3_6 = 4.7291642094198e-02; Q3_7 = -4.0135203618880e-03; Q3_8 = 0.0000000000000e+00; Q3_9 = 0.0000000000000e+00; Q3_10 = 0.0000000000000e+00; Q3_11 = 0.0000000000000e+00; Q4_0 = 6.9678474730984e-02; Q4_1 = -1.9369192209331e-01; Q4_2 = 3.5728039257451e-01; Q4_3 = -8.7694387866575e-01; Q4_4 = 0.0000000000000e+00; Q4_5 = 8.1123946853807e-01; Q4_6 = -2.0267150541446e-01; Q4_7 = 3.8680398901392e-02; Q4_8 = -3.5714285714286e-03; Q4_9 = 0.0000000000000e+00; Q4_10 = 0.0000000000000e+00; Q4_11 = 0.0000000000000e+00; Q5_0 = -2.6434024071371e-02; Q5_1 = 6.8638079843479e-02; Q5_2 = -1.1266686855013e-01; Q5_3 = 2.4698058719506e-01; Q5_4 = -8.1123946853807e-01; Q5_5 = 0.0000000000000e+00; Q5_6 = 8.0108544742793e-01; Q5_7 = -2.0088756283071e-01; Q5_8 = 3.8095238095238e-02; Q5_9 = -3.5714285714286e-03; Q5_10 = 0.0000000000000e+00; Q5_11 = 0.0000000000000e+00; Q6_0 = 5.5992311465618e-03; Q6_1 = -1.3146457241484e-02; Q6_2 = 1.8334941452280e-02; Q6_3 = -4.7291642094198e-02; Q6_4 = 2.0267150541446e-01; Q6_5 = -8.0108544742793e-01; Q6_6 = 0.0000000000000e+00; Q6_7 = 8.0039405922650e-01; Q6_8 = -2.0000000000000e-01; Q6_9 = 3.8095238095238e-02; Q6_10 = -3.5714285714286e-03; Q6_11 = 0.0000000000000e+00; Q7_0 = -4.9954552590464e-04; Q7_1 = 9.7652615479254e-04; Q7_2 = -8.2741521740941e-04; Q7_3 = 4.0135203618880e-03; Q7_4 = -3.8680398901392e-02; Q7_5 = 2.0088756283071e-01; Q7_6 = -8.0039405922650e-01; Q7_7 = 0.0000000000000e+00; Q7_8 = 8.0000000000000e-01; Q7_9 = -2.0000000000000e-01; Q7_10 = 3.8095238095238e-02; Q7_11 = -3.5714285714286e-03; for i = 1:BP for j = 1:BP Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operator %% D1 = H\Q; %%%%%%%%%%%%%%%%%%%%%%%%%%%