Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_noneq_6.m @ 1337:bf2554f1825d feature/D2_boundary_opt
Add periodic D1 and D2 operators for orders 8,10,12
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 13 May 2022 13:28:10 +0200 |
parents | 4cb627c7fb90 |
children |
line wrap: on
line source
function [D1,H] = d1_noneq_6(N,h) % N: Number of grid points if(N<12) error('Operator requires at least 12 grid points'); end % BP: Number of boundary points BP = 6; %%%% Norm matrix %%%%%%%% P = sparse(BP,1); %#ok<*NASGU> P0 = 1.3030223027124e-01; P1 = 6.8851501587715e-01; P2 = 9.5166202564389e-01; P3 = 9.9103890475697e-01; P4 = 1.0028757074552e+00; P5 = 9.9950151111941e-01; for i = 0:BP-1 P(i+1) = eval(['P' num2str(i)]); end H = ones(N,1); H(1:BP) = P; H(end-BP+1:end) = flip(P); H = spdiags(h*H,0,N,N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil order = 6; d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; d = repmat(d,N,1); Q = spdiags(d,-order/2:order/2,N,N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.6042071945824e-01; Q0_2 = -2.2104152954203e-01; Q0_3 = 7.6243679810093e-02; Q0_4 = -1.7298206716724e-02; Q0_5 = 1.6753369904210e-03; Q0_6 = 0.0000000000000e+00; Q0_7 = 0.0000000000000e+00; Q0_8 = 0.0000000000000e+00; Q1_0 = -6.6042071945824e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 8.7352798702787e-01; Q1_3 = -2.6581719253084e-01; Q1_4 = 5.7458484948314e-02; Q1_5 = -4.7485599871040e-03; Q1_6 = 0.0000000000000e+00; Q1_7 = 0.0000000000000e+00; Q1_8 = 0.0000000000000e+00; Q2_0 = 2.2104152954203e-01; Q2_1 = -8.7352798702787e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 8.1707122038457e-01; Q2_4 = -1.8881125503769e-01; Q2_5 = 2.4226492138960e-02; Q2_6 = 0.0000000000000e+00; Q2_7 = 0.0000000000000e+00; Q2_8 = 0.0000000000000e+00; Q3_0 = -7.6243679810093e-02; Q3_1 = 2.6581719253084e-01; Q3_2 = -8.1707122038457e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 7.6798636652679e-01; Q3_5 = -1.5715532552963e-01; Q3_6 = 1.6666666666667e-02; Q3_7 = 0.0000000000000e+00; Q3_8 = 0.0000000000000e+00; Q4_0 = 1.7298206716724e-02; Q4_1 = -5.7458484948314e-02; Q4_2 = 1.8881125503769e-01; Q4_3 = -7.6798636652679e-01; Q4_4 = 0.0000000000000e+00; Q4_5 = 7.5266872305402e-01; Q4_6 = -1.5000000000000e-01; Q4_7 = 1.6666666666667e-02; Q4_8 = 0.0000000000000e+00; Q5_0 = -1.6753369904210e-03; Q5_1 = 4.7485599871040e-03; Q5_2 = -2.4226492138960e-02; Q5_3 = 1.5715532552963e-01; Q5_4 = -7.5266872305402e-01; Q5_5 = 0.0000000000000e+00; Q5_6 = 7.5000000000000e-01; Q5_7 = -1.5000000000000e-01; Q5_8 = 1.6666666666667e-02; for i = 1:BP for j = 1:BP Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operator %% D1 = H\Q; %%%%%%%%%%%%%%%%%%%%%%%%%%%