view +time/+rk/General.m @ 992:bbd165cc585c feature/timesteppers

Move time.Rungekutta to time.rk.General
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 09 Jan 2019 10:59:38 +0100
parents +time/Rungekutta.m@a32856fc2ad2
children 44e7e497c3b7
line wrap: on
line source

classdef General < time.Timestepper
    properties
        F       % RHS of the ODE
        dt      % Time step
        t       % Time point
        v       % Solution vector
        n       % Time level
        scheme  % The scheme used for the time stepping, e.g rk4, rk6 etc.
        coeffs  % Butcher tableau coefficients
        V       % All stage approximations in most recent time step
        K       % All stage rates in most recent time step
    end


    methods
        % Timesteps v_t = F(v,t), using the specified RK method from t = t0 with
        % timestep dt and initial conditions v = v0
        function obj = General(F, dt, t0, v0, method, discreteData)
            default_arg('method',"rk4");
            default_arg('discreteData', []);
            obj.F = F;
            obj.dt = dt;
            obj.t = t0;
            obj.v = v0;
            obj.n = 0;

            % Extract the coefficients for the specified method
            % used for the RK updates from the Butcher tableua.
            [s,a,b,c] = time.rk.butcherTableauFromStr(method);
            obj.coeffs = struct('s',s,'a',a,'b',b,'c',c);

            if isempty(discreteData)
                obj.scheme = @(v,t,n) time.rk.rungekutta(v, t, dt, F, obj.coeffs);
            else
                obj.scheme = @(v,t,n) time.rk.rungekuttaDiscreteData(v, t, dt, F, obj.coeffs, discreteData, n);
            end
        end

        % v: Current solution
        % t: Current time
        % V: All stage approximations in most recent time step
        % K: All stage rates in most recent time step
        % T: Time points (corresponding to V and K) in most recent time step
        function [v,t,V,T,K] = getV(obj)
            v = obj.v;
            t = obj.t;
            V = obj.V;
            K = obj.K;
            T = obj.t + obj.dt*obj.coeffs.b;
        end

        function obj = step(obj)
            [obj.v, obj.V, obj.K] = obj.scheme(obj.v, obj.t, obj.n);
            obj.t = obj.t + obj.dt;
            obj.n = obj.n + 1;
        end

        % Returns a vector of time points, including substage points,
        % in the time interval [t0, tEnd].
        % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already.
        function tvec = timePoints(obj, t0, tEnd)
            N = round( (tEnd-t0)/obj.dt );
            tvec = zeros(N*obj.s, 1);
            s = obj.coeffs.s;
            c = obj.coeffs.c;
            for i = 1:N
                ind = (i-1)*s+1 : i*s;
                tvec(ind) = ((i-1) + c')*obj.dt;
            end
        end

        % Returns a vector of quadrature weights corresponding to grid points
        % in time interval [t0, tEnd], substage points included.
        % The time-step obj.dt is assumed to be aligned with [t0, tEnd] already.
        function weights = quadWeights(obj, t0, tEnd)
            N = round( (tEnd-t0)/obj.dt );
            b = obj.coeffs.b;
            weights = repmat(b', N, 1);
        end
    end
end