Mercurial > repos > public > sbplib
view +scheme/Utux2D.m @ 610:b7b3c11fab4d feature/utux2D
Add interpolation to scheme
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Sat, 14 Oct 2017 22:38:42 -0700 |
parents | 0f9d20dbb7ce |
children | 2d85f17a8aec |
line wrap: on
line source
classdef Utux2D < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing grid % Grid order % Order accuracy for the approximation v0 % Initial data a % Wave speed a = [a1, a2]; H % Discrete norm H_x, H_y % Norms in the x and y directions Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms % Derivatives Dx, Dy % Boundary operators e_w, e_e, e_s, e_n D % Total discrete operator % String, type of interface coupling % Default: 'upwind' % Other: 'centered' coupling_type % String, type of interpolation operators % Default: 'AWW' (Almquist Wang Werpers) % Other: 'MC' (Mattsson Carpenter) interpolation_type end methods function obj = Utux2D(g ,order, opSet, a, coupling_type, interpolation_type) default_arg('interpolation_type','AWW'); default_arg('coupling_type','upwind'); default_arg('a',1/sqrt(2)*[1, 1]); default_arg('opSet',@sbp.D2Standard); assert(isa(g, 'grid.Cartesian')) m = g.size(); m_x = m(1); m_y = m(2); m_tot = g.N(); xlim = {g.x{1}(1), g.x{1}(end)}; ylim = {g.x{2}(1), g.x{2}(end)}; obj.grid = g; % Operator sets ops_x = opSet(m_x, xlim, order); ops_y = opSet(m_y, ylim, order); Ix = speye(m_x); Iy = speye(m_y); % Norms Hx = ops_x.H; Hy = ops_y.H; Hxi = ops_x.HI; Hyi = ops_y.HI; obj.H_x = Hx; obj.H_y = Hy; obj.H = kron(Hx,Hy); obj.Hi = kron(Hxi,Hyi); obj.Hx = kron(Hx,Iy); obj.Hy = kron(Ix,Hy); obj.Hxi = kron(Hxi,Iy); obj.Hyi = kron(Ix,Hyi); % Derivatives Dx = ops_x.D1; Dy = ops_y.D1; obj.Dx = kron(Dx,Iy); obj.Dy = kron(Ix,Dy); % Boundary operators obj.e_w = kr(ops_x.e_l, Iy); obj.e_e = kr(ops_x.e_r, Iy); obj.e_s = kr(Ix, ops_y.e_l); obj.e_n = kr(Ix, ops_y.e_r); obj.m = m; obj.h = [ops_x.h ops_y.h]; obj.order = order; obj.a = a; obj.coupling_type = coupling_type; obj.interpolation_type = interpolation_type; obj.D = -(a(1)*obj.Dx + a(2)*obj.Dy); end % Closure functions return the opertors applied to the own domain to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type) default_arg('type','dirichlet'); sigma = -1; % Scalar penalty parameter switch boundary case {'w','W','west','West'} tau = sigma*obj.a(1)*obj.e_w*obj.H_y; closure = obj.Hi*tau*obj.e_w'; case {'s','S','south','South'} tau = sigma*obj.a(2)*obj.e_s*obj.H_x; closure = obj.Hi*tau*obj.e_s'; end penalty = -obj.Hi*tau; end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % Get neighbour boundary operator switch neighbour_boundary case {'e','E','east','East'} e_neighbour = neighbour_scheme.e_e; m_neighbour = neighbour_scheme.m(2); case {'w','W','west','West'} e_neighbour = neighbour_scheme.e_w; m_neighbour = neighbour_scheme.m(2); case {'n','N','north','North'} e_neighbour = neighbour_scheme.e_n; m_neighbour = neighbour_scheme.m(1); case {'s','S','south','South'} e_neighbour = neighbour_scheme.e_s; m_neighbour = neighbour_scheme.m(1); end switch obj.coupling_type % Upwind coupling (energy dissipation) case 'upwind' sigma_ds = -1; %"Downstream" penalty sigma_us = 0; %"Upstream" penalty % Energy-preserving coupling (no energy dissipation) case 'centered' sigma_ds = -1/2; %"Downstream" penalty sigma_us = 1/2; %"Upstream" penalty otherwise error(['Interface coupling type ' coupling_type ' is not available.']) end % Check grid ratio for interpolation switch boundary case {'w','W','west','West','e','E','east','East'} m = obj.m(2); case {'s','S','south','South','n','N','north','North'} m = obj.m(1); end grid_ratio = m/m_neighbour; if grid_ratio ~= 1 [ms, index] = sort([m, m_neighbour]); orders = [obj.order, neighbour_scheme.order]; orders = orders(index); switch obj.interpolation_type case 'MC' interpOpSet = sbp.InterpMC(ms(1),ms(2),orders(1),orders(2)); if grid_ratio < 1 I_neighbour2local_us = interpOpSet.IF2C; I_neighbour2local_ds = interpOpSet.IF2C; elseif grid_ratio > 1 I_neighbour2local_us = interpOpSet.IC2F; I_neighbour2local_ds = interpOpSet.IC2F; end case 'AWW' %String 'C2F' indicates that ICF2 is more accurate. interpOpSetF2C = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'F2C'); interpOpSetC2F = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'C2F'); if grid_ratio < 1 % Local is coarser than neighbour I_neighbour2local_us = interpOpSetC2F.IF2C; I_neighbour2local_ds = interpOpSetF2C.IF2C; elseif grid_ratio > 1 % Local is finer than neighbour I_neighbour2local_us = interpOpSetF2C.IC2F; I_neighbour2local_ds = interpOpSetC2F.IC2F; end otherwise error(['Interpolation type ' obj.interpolation_type ... ' is not available.' ]); end else % No interpolation required I_neighbour2local_us = speye(m,m); I_neighbour2local_ds = speye(m,m); end switch boundary case {'w','W','west','West'} tau = sigma_ds*obj.a(1)*obj.e_w*obj.H_y; closure = obj.Hi*tau*obj.e_w'; penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; case {'e','E','east','East'} tau = sigma_us*obj.a(1)*obj.e_e*obj.H_y; closure = obj.Hi*tau*obj.e_e'; penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; case {'s','S','south','South'} tau = sigma_ds*obj.a(2)*obj.e_s*obj.H_x; closure = obj.Hi*tau*obj.e_s'; penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; case {'n','N','north','North'} tau = sigma_us*obj.a(2)*obj.e_n*obj.H_x; closure = obj.Hi*tau*obj.e_n'; penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; end end function N = size(obj) N = obj.m; end end methods(Static) % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end