Mercurial > repos > public > sbplib
view +scheme/Schrodinger1dCurve.m @ 501:b7280c6c6b9a feature/quantumTriangles
Found some small bugs when making slides for pressentation
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Tue, 25 Apr 2017 09:52:32 +0200 |
parents | 324c927d8b1d |
children | 2047ff9640b3 |
line wrap: on
line source
classdef Schrodinger1dCurve < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing xi % Grid order % Order accuracy for the approximation grid D % non-stabalized scheme operator H % Discrete norm M % Derivative norm alpha x_r x_l ddt_x_r ddt_x_l a a_xi Ji t_up x V_mat D1 D2 Hi e_l e_r d1_l d1_r gamm end methods % Solving SE in the form u_t = i*u_xx +i*V on deforming 1D domain; function obj = Schrodinger1dCurve(g,order,boundaries,V,constJi) default_arg('V',0); default_arg('constJi',false) xilim={0 1}; m = N(g); if constJi ops = sbp.D2Standard(m,xilim,order); else ops = sbp.D4Variable(m,xilim,order); end obj.x_l = boundaries{1}; obj.x_r = boundaries{2}; obj.ddt_x_l = boundaries{3}; obj.ddt_x_r = boundaries{4}; obj.xi=ops.x; obj.h=ops.h; obj.D2 = ops.D2; obj.D1 = ops.D1; obj.H = ops.H; obj.Hi = ops.HI; obj.M = ops.M; obj.e_l = ops.e_l; obj.e_r = ops.e_r; obj.d1_l = ops.d1_l; obj.d1_r = ops.d1_r; obj.grid = g; if isa(V,'function_handle') V_vec = V(obj.x); else V_vec = obj.xi*0 + V; end obj.V_mat = spdiags(V_vec,0,m,m); obj.D = @(t) obj.d_fun(t); obj.m = m; obj.order = order; end % Closure functions return the opertors appliedo to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [D] = d_fun(obj,t) obj.variable_update(t); % In driscretization? D= obj.Ji*(-0.5*(obj.D1*obj.a - obj.a_xi + obj.a*obj.D1) + 1i*obj.D2(diag(obj.Ji)) + 1i*obj.V_mat); end function [] = variable_update(obj,t) if (t == obj.t_up) return else x_r = obj.x_r(t); x_l = obj.x_l(t); ddt_x_r = obj. ddt_x_r(t); ddt_x_l = obj.ddt_x_l(t); obj.x = obj.xi*(x_r -x_l) + x_l; obj.a = sparse(diag((-ddt_x_l*( x_r - x_l) - (obj.x-x_l)*(ddt_x_r-ddt_x_l))/(x_r-x_l))); obj.Ji = sparse(diag(1./(x_r - x_l + 0*obj.x))); obj.a_xi = sparse(diag(-1*(ddt_x_r - ddt_x_l + 0*obj.x))); obj.t_up = t; end end function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','dirichlet'); default_arg('data',0); [e,d,s,p] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} tau1 = @(t) s * 1i*obj.Ji(p,p)^2*d; tau2 = @(t) obj.Ji*(-1*s*obj.a(p,p) - abs(obj.a(p,p)))/4*e; closure = @(t) obj.Hi*tau1(t)*e' + obj.Hi*tau2(obj.a)*e'; switch class(data) case 'double' penalty = @(t) -obj.Ji*(obj.Hi*tau1*data+obj.Hi*tau2(obj.a)*data); % case 'function_handle' % penalty = @(t)-obj.Hi*tau*data(t); otherwise error('Wierd data argument!') end % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d_u,s_u,p_u] = obj.get_boundary_ops(boundary); [e_v,d_v,s_v,p_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); a1 = s_u* 1/2 * 1i ; b1 = -s_u* 1/2 * 1i; gamma = @(a) -obj.Ji*s_u*a(p_u,p_u)/2*e_u; tau = @(t) a1*obj.Ji(p_u,p_u)^2*d_u; sig = b1*e_u; closure = @(t) obj.Hi * (tau(t)*e_u' + sig*obj.Ji(p_u,p_u)^2*d_u' + gamma(obj.a)*e_u'); penalty = @(t) obj.Hi * (-tau(t)*e_v' - sig*obj.Ji(p_u,p_u)^2*d_v' - gamma(obj.a)*e_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e,d,s,p] = get_boundary_ops(obj,boundary) switch boundary case 'l' e = obj.e_l; d = obj.d1_l; s = -1; p=1; case 'r' e = obj.e_r; d = obj.d1_r; s = 1; p=obj.m; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = obj.m; end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end