Mercurial > repos > public > sbplib
view +sbp/+implementations/d2_noneq_variable_6.m @ 1344:b4e5e45bd239 feature/D2_boundary_opt
Remove round off zeros from D2Nonequidistant operators
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 15 Oct 2022 15:48:20 +0200 |
parents | bcdb14b05d03 |
children |
line wrap: on
line source
function [H, HI, D1, D2, DI] = d2_noneq_variable_6(N, h, options) % N: Number of grid points % h: grid spacing % options: struct containing options for constructing the operator % current options are: % options.stencil_type ('minimal','nonminimal','wide') % options.AD ('upwind', 'op') % BP: Number of boundary points % order: Accuracy of interior stencil BP = 6; order = 6; if(N<2*BP) error(['Operator requires at least ' num2str(2*BP) ' grid points']); end %%%% Norm matrix %%%%%%%% P = zeros(BP, 1); P0 = 1.3030223027124e-01; P1 = 6.8851501587715e-01; P2 = 9.5166202564389e-01; P3 = 9.9103890475697e-01; P4 = 1.0028757074552e+00; P5 = 9.9950151111941e-01; for i = 0:BP - 1 P(i + 1) = eval(['P' num2str(i)]); end Hv = ones(N, 1); Hv(1:BP) = P; Hv(end - BP + 1:end) = flip(P); Hv = h * Hv; H = spdiags(Hv, 0, N, N); HI = spdiags(1 ./ Hv, 0, N, N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil d = [-1/60, 3/20, -3/4, 0, 3/4, -3/20, 1/60]; d = repmat(d, N, 1); Q = spdiags(d, -order / 2:order / 2, N, N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.6042071945824e-01; Q0_2 = -2.2104152954203e-01; Q0_3 = 7.6243679810093e-02; Q0_4 = -1.7298206716724e-02; Q0_5 = 1.6753369904210e-03; Q0_6 = 0.0000000000000e+00; Q0_7 = 0.0000000000000e+00; Q0_8 = 0.0000000000000e+00; Q1_0 = -6.6042071945824e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 8.7352798702787e-01; Q1_3 = -2.6581719253084e-01; Q1_4 = 5.7458484948314e-02; Q1_5 = -4.7485599871040e-03; Q1_6 = 0.0000000000000e+00; Q1_7 = 0.0000000000000e+00; Q1_8 = 0.0000000000000e+00; Q2_0 = 2.2104152954203e-01; Q2_1 = -8.7352798702787e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 8.1707122038457e-01; Q2_4 = -1.8881125503769e-01; Q2_5 = 2.4226492138960e-02; Q2_6 = 0.0000000000000e+00; Q2_7 = 0.0000000000000e+00; Q2_8 = 0.0000000000000e+00; Q3_0 = -7.6243679810093e-02; Q3_1 = 2.6581719253084e-01; Q3_2 = -8.1707122038457e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 7.6798636652679e-01; Q3_5 = -1.5715532552963e-01; Q3_6 = 1.6666666666667e-02; Q3_7 = 0.0000000000000e+00; Q3_8 = 0.0000000000000e+00; Q4_0 = 1.7298206716724e-02; Q4_1 = -5.7458484948314e-02; Q4_2 = 1.8881125503769e-01; Q4_3 = -7.6798636652679e-01; Q4_4 = 0.0000000000000e+00; Q4_5 = 7.5266872305402e-01; Q4_6 = -1.5000000000000e-01; Q4_7 = 1.6666666666667e-02; Q4_8 = 0.0000000000000e+00; Q5_0 = -1.6753369904210e-03; Q5_1 = 4.7485599871040e-03; Q5_2 = -2.4226492138960e-02; Q5_3 = 1.5715532552963e-01; Q5_4 = -7.5266872305402e-01; Q5_5 = 0.0000000000000e+00; Q5_6 = 7.5000000000000e-01; Q5_7 = -1.5000000000000e-01; Q5_8 = 1.6666666666667e-02; for i = 1:BP for j = 1:BP Q(i, j) = eval(['Q' num2str(i - 1) '_' num2str(j - 1)]); Q(N + 1 - i, N + 1 - j) = -eval(['Q' num2str(i - 1) '_' num2str(j - 1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Undivided difference operators %%%% % Closed with zeros at the first boundary nodes. m = N; DD_3 = (-diag(ones(m - 2, 1), -2) + 3 * diag(ones(m - 1, 1), -1) - 3 * diag(ones(m, 1), 0) + diag(ones(m - 1, 1), 1)); DD_3(1:5, 1:6) = [0 0 0 0 0 0; 0 0 0 0 0 0; -0.46757024540266021836e1 0.88373748766984018738e1 -0.56477423503490435435e1 0.14860699276772438533e1 0 0; 0 -0.13802450758054908946e1 0.36701915175801340778e1 -0.33643068661005748879e1 0.10743604243259317047e1 0; 0 0 -0.10409288946349185618e1 0.30665535320781497878e1 -0.30329117010471766032e1 0.10072870636039453772e1; ]; DD_3(m - 3:m, m - 5:m) = [-0.10072870636039453772e1 0.30329117010471766032e1 -0.30665535320781497878e1 0.10409288946349185618e1 0 0; 0 -0.10743604243259317047e1 0.33643068661005748879e1 -0.36701915175801340778e1 0.13802450758054908946e1 0; 0 0 -0.14860699276772438533e1 0.56477423503490435435e1 -0.88373748766984018738e1 0.46757024540266021836e1; 0 0 0 0 0 0; ]; DD_3 = sparse(DD_3); DD_4 = (diag(ones(m - 2, 1), 2) - 4 * diag(ones(m - 1, 1), 1) + 6 * diag(ones(m, 1), 0) - 4 * diag(ones(m - 1, 1), -1) + diag(ones(m - 2, 1), -2)); DD_4(1:5, 1:7) = [0 0 0 0 0 0 0; 0 0 0 0 0 0 0; 0.57302111593550648941e1 -0.12521994384708052700e2 0.11419402572582197931e2 -0.59442797107089754133e1 0.13166603634797652881e1 0 0; 0 0.14441513881249918393e1 -0.49292485821432017638e1 0.67286137322011497757e1 -0.42974416973037268190e1 0.10539251591207869677e1 0; 0 0 0.10466075357769140419e1 -0.40887380427708663837e1 0.60658234020943532065e1 -0.40291482544157815088e1 0.10054553593153806442e1; ]; DD_4(m - 4:m, m - 6:m) = [0.10054553593153806442e1 -0.40291482544157815088e1 0.60658234020943532065e1 -0.40887380427708663837e1 0.10466075357769140419e1 0 0; 0 0.10539251591207869677e1 -0.42974416973037268190e1 0.67286137322011497757e1 -0.49292485821432017638e1 0.14441513881249918393e1 0; 0 0 0.13166603634797652881e1 -0.59442797107089754133e1 0.11419402572582197931e2 -0.12521994384708052700e2 0.57302111593550648941e1; 0 0 0 0 0 0 0; 0 0 0 0 0 0 0; ]; DD_4 = sparse(DD_4); DD_5 = (-diag(ones(m - 3, 1), -3) + 5 * diag(ones(m - 2, 1), -2) - 10 * diag(ones(m - 1, 1), -1) + 10 * diag(ones(m, 1), 0) - 5 * diag(ones(m - 1, 1), 1) + diag(ones(m - 2, 1), 2)); DD_5(1:6, 1:8) = [0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0; -0.67194556014531368457e1 0.16377214352871472626e2 -0.19171027475746103125e2 0.14860699276772438533e2 -0.65833018173988264407e1 0.12358712649541552519e1 0 0; 0 -0.14971527633959360324e1 0.61951742553920293904e1 -0.11214356220335249626e2 0.10743604243259317047e2 -0.52696257956039348385e1 0.10423562806837740594e1 0; 0 0 -0.10511702536596915242e1 0.51109225534635829797e1 -0.10109705670157255344e2 0.10072870636039453772e2 -0.50272767965769032212e1 0.10043595308908133377e1; ]; DD_5(m - 4:m, m - 7:m) = [-0.10043595308908133377e1 0.50272767965769032212e1 -0.10072870636039453772e2 0.10109705670157255344e2 -0.51109225534635829797e1 0.10511702536596915242e1 0 0; 0 -0.10423562806837740594e1 0.52696257956039348385e1 -0.10743604243259317047e2 0.11214356220335249626e2 -0.61951742553920293904e1 0.14971527633959360324e1 0; 0 0 -0.12358712649541552519e1 0.65833018173988264407e1 -0.14860699276772438533e2 0.19171027475746103125e2 -0.16377214352871472626e2 0.67194556014531368457e1; 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0; ]; DD_5 = sparse(DD_5); DD_6 = (diag(ones(m - 3, 1), 3) - 6 * diag(ones(m - 2, 1), 2) + 15 * diag(ones(m - 1, 1), 1) - 20 * diag(ones(m, 1), 0) + 15 * diag(ones(m - 1, 1), -1) - 6 * diag(ones(m - 2, 1), -2) + diag(ones(m - 3, 1), -3)); DD_6(1:6, 1:9) = [0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0.76591061528436941127e1 -0.20373923615000091397e2 0.28913418478606999359e2 -0.29721398553544877066e2 0.19749905452196479322e2 -0.74152275897249315116e1 0.11881196746227271813e1 0 0; 0 0.15426631885693469226e1 -0.74666187707188589528e1 0.16821534330502874439e2 -0.21487208486518634095e2 0.15808877386811804515e2 -0.62541376841026443562e1 0.10348900354561115264e1 0; 0 0 0.10549863219420430611e1 -0.61331070641562995756e1 0.15164558505235883016e2 -0.20145741272078907544e2 0.15081830389730709664e2 -0.60261571853448800265e1 0.10036303046714514054e1; ]; DD_6(m - 5:m, m - 8:m) = [0.10036303046714514054e1 -0.60261571853448800265e1 0.15081830389730709664e2 -0.20145741272078907544e2 0.15164558505235883016e2 -0.61331070641562995756e1 0.10549863219420430611e1 0 0; 0 0.10348900354561115264e1 -0.62541376841026443562e1 0.15808877386811804515e2 -0.21487208486518634095e2 0.16821534330502874439e2 -0.74666187707188589528e1 0.15426631885693469226e1 0; 0 0 0.11881196746227271813e1 -0.74152275897249315116e1 0.19749905452196479322e2 -0.29721398553544877066e2 0.28913418478606999359e2 -0.20373923615000091397e2 0.76591061528436941127e1; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; ]; DD_6 = sparse(DD_6); %%%% Difference operators %%% D1 = H \ Q; % Helper functions for constructing D2(c) % TODO: Consider changing sparse(diag(...)) to spdiags(....) min_inds = sbp.implementations.d2_sparsity_pattern_inds(m, order, BP, 0, 3); nonmin_inds = sbp.implementations.d2_sparsity_pattern_inds(m, order, BP, 1, 3); % Minimal 7 point stencil width function D2 = D2_fun_minimal(c) % Here we add variable diffusion C1 = sparse(diag(c)); C2 = 1/2 * diag(ones(m - 1, 1), -1) + 1/2 * diag(ones(m, 1), 0); C2(1, 2) = 1/2; C3 = 1/3 * diag(ones(m - 1, 1), -1) + 1/3 * diag(ones(m - 1, 1), 1) + 1/3 * diag(ones(m, 1), 0); C3(1, 3) = 1/3; C3(m, m - 2) = 1/3; C2 = sparse(diag(C2 * c)); C3 = sparse(diag(C3 * c)); % Remainder term added to wide second derivative operator R = (1/3600 / h) * transpose(DD_6) * C1 * DD_6 + (1/600 / h) * transpose(DD_5) * C2 * DD_5 + (1/80 / h) * transpose(DD_4) * C3 * DD_4; D2 = D1 * C1 * D1 - H \ R; % Remove potential round off zeros D2_tmp = sparse(m,m); D2_tmp(min_inds) = D2(min_inds); D2 = D2_tmp; end % Non-minimal 9 point stencil width function D2 = D2_fun_nonminimal(c) % Here we add variable diffusion C1 = sparse(diag(c)); C2 = 1/2 * diag(ones(m - 1, 1), -1) + 1/2 * diag(ones(m, 1), 0); C2(1, 2) = 1/2; C2 = sparse(diag(C2 * c)); % Remainder term added to wide second derivative operator R = (1/3600 / h) * transpose(DD_6) * C1 * DD_6 + (1/600 / h) * transpose(DD_5) * C2 * DD_5; D2 = D1 * C1 * D1 - H \ R; % Remove potential round off zeros D2_tmp = sparse(m,m); D2_tmp(nonmin_inds) = D2(nonmin_inds); D2 = D2_tmp; end % Wide stencil function D2 = D2_fun_wide(c) % Here we add variable diffusion C1 = sparse(diag(c)); D2 = D1 * C1 * D1; end switch options.stencil_width case 'minimal' D2 = @D2_fun_minimal; case 'nonminimal' D2 = @D2_fun_nonminimal; case 'wide' D2 = @D2_fun_wide; otherwise error('No option %s for stencil width', options.stencil_width) end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Artificial dissipation operator %%% switch options.AD case 'upwind' % This is the choice that yield 5th order Upwind DI = H \ (transpose(DD_3) * DD_3) * (-1/60); case 'op' % This choice will preserve the order of the underlying % Non-dissipative D1 SBP operator DI = H \ (transpose(DD_4) * DD_4) * (-1 / (5 * 60)); % Notice that you can use any negative number instead of (-1/(5*60)) otherwise error("Artificial dissipation options '%s' not implemented.", option.AD) end %%%%%%%%%%%%%%%%%%%%%%%%%%% end