view +grid/Schrodinger2dCurve.m @ 490:b13d44271ead feature/quantumTriangles

Schrodinger2dCurve Added
author Ylva Rydin <ylva.rydin@telia.com>
date Thu, 09 Feb 2017 11:41:21 +0100
parents
children
line wrap: on
line source

classdef Schrodinger2dCurve < scheme.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing

        grid

        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        M % Derivative norm
        H % Discrete norm
        Hi
        H_u, H_v % Norms in the x and y directions
        Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
        Hi_u, Hi_v
        Hiu, Hiv
        D1_v D1_u
        D2_v D2_u
        Du Dv
        
 
        e_w, e_e, e_s, e_n
        du_w, dv_w
        du_e, dv_e
        du_s, dv_s
        du_n, dv_n
        g_1
        g_2
        
        p,p_tau
    end

    methods
        function obj = Schrodinger2dCurve(g ,order, opSet, p,p_tau)
            default_arg('opSet',@sbp.D2Variable);
            default_arg('c', 1);

            assert(isa(g, 'grid.Curvilinear'))
            
            obj.p=p;
            obj.p_tau=p_tau;
            obj.c=1;
            
            m = g.size();
            m_u = m(1);
            m_v = m(2);
            m_tot = g.N();

            h = g.scaling();
            h_u = h(1);
            h_v = h(2);

            % Operators
            ops_u = opSet(m_u, {0, 1}, order);
            ops_v = opSet(m_v, {0, 1}, order);

            I_u = speye(m_u);
            I_v = speye(m_v);

            D1_u = ops_u.D1;
           
            H_u =  ops_u.H;
            Hi_u = ops_u.HI;
            e_l_u = ops_u.e_l;
            e_r_u = ops_u.e_r;
            d1_l_u = ops_u.d1_l;
            d1_r_u = ops_u.d1_r;

            obj.D1_v = ops_v.D1;
            obj.D2_v = ops_v.D2;
            H_v =  ops_v.H;
            Hi_v = ops_v.HI;
            e_l_v = ops_v.e_l;
            e_r_v = ops_v.e_r;
            d1_l_v = ops_v.d1_l;
            d1_r_v = ops_v.d1_r;

            obj.Du = kr(D1_u,I_v);
            obj.Dv = kr(I_u,D1_v);

            obj.H = kr(H_u,H_v);
            obj.Hi = kr(Hi_u,Hi_v);
            obj.Hu  = kr(H_u,I_v);
            obj.Hv  = kr(I_u,H_v);
            obj.Hiu = kr(Hi_u,I_v);
            obj.Hiv = kr(I_u,Hi_v);

            obj.e_w  = kr(e_l_u,I_v);
            obj.e_e  = kr(e_r_u,I_v);
            obj.e_s  = kr(I_u,e_l_v);
            obj.e_n  = kr(I_u,e_r_v);
            obj.du_w = kr(d1_l_u,I_v);
            obj.dv_w = (obj.e_w'*Dv)';
            obj.du_e = kr(d1_r_u,I_v);
            obj.dv_e = (obj.e_e'*Dv)';
            obj.du_s = (obj.e_s'*Du)';
            obj.dv_s = kr(I_u,d1_l_v);
            obj.du_n = (obj.e_n'*Du)';
            obj.dv_n = kr(I_u,d1_r_v);

%             obj.x_u = x_u;
%             obj.x_v = x_v;
%             obj.y_u = y_u;
%             obj.y_v = y_v;

            obj.m = m;
            obj.h = [h_u h_v];
            obj.order = order;
            obj.grid = g;


        end

        
        function [D ]= d_fun(obj,t)
                        % Metric derivatives
            ti = parametrization.Ti.points(obj.p.p1(t),obj.p.p2(t),obj.p.p3,obj.p.p4);
            ti_tau = parametrization.Ti.points(obj.p_tau.p1(t),obj.p_tau.p2(t),obj.p_tau.p3,obj.p_tau.p4);
            
            coords = parametrization.ti.map();
            coords_tau = parametrization.ti_tau.map();
            x = coords(:,1);
            y = coords(:,2);

            x_tau = coords_tau(:,1);
            y_tau = coords_tau(:,2); 
            
            x_u = obj.Du*x;
            x_v = obj.Dv*x;
            y_u = obj.Du*y;
            y_v = obj.Dv*y;

            J = x_u.*y_v - x_v.*y_u;
            a11 =  1./J.* (x_v.^2  + y_v.^2);
            a12 = -1./J .* (x_u.*x_v + y_u.*y_v);
            a22 =  1./J .* (x_u.^2  + y_u.^2);
            lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2));

            % Assemble full operators
            L_12 = spdiags(a12, 0, m_tot, m_tot);
            Duv = obj.Du*L_12*obj.Dv;
            Dvu = obj.Dv*L_12*obj.Du;

            Duu = sparse(m_tot);
            Dvv = sparse(m_tot);
            ind = grid.funcToMatrix(g, 1:m_tot);

            for i = 1:m_v
                D = D2_u(a11(ind(:,i)));
                p = ind(:,i);
                Duu(p,p) = D;
            end

            for i = 1:m_u
                D = D2_v(a22(ind(i,:)));
                p = ind(i,:);
                Dvv(p,p) = D;
            end
         

            J = spdiags(J, 0, m_tot, m_tot);
            Ji = spdiags(1./J, 0, m_tot, m_tot);
            obj.g_1 = x_tau.*y_v-y_tau.*x_v;
            obj.g_2 = -x_tau.*y_u + y_tau.*x_u;
            
            %Add the flux splitting
            D = Ji*(obj.g_1*obj.Du + obj.g_2*obj.Dv + 1i*obj.c^2*(Duu + Duv + Dvu + Dvv));
            
%             obj.gamm_u = h_u*ops_u.borrowing.M.d1;
%             obj.gamm_v = h_v*ops_v.borrowing.M.d1;
            
        end

        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj, boundary, parameter)
            default_arg('type','neumann');
            default_arg('parameter', []);

                    % v denotes the solution in the neighbour domain
                    tuning = 1.2;
                    % tuning = 20.2;
                    [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g] = obj.get_boundary_ops(boundary);

                    a_n = spdiag(coeff_n);
                    a_t = spdiag(coeff_t);

                    F = (s * a_n * d_n' + s * a_t*d_t')';

                    u = obj;

                    b1 = gamm*u.lambda./u.a11.^2;
                    b2 = gamm*u.lambda./u.a22.^2;

                    tau1  = -1./b1 - 1./b2;
                    tau1 = tuning * spdiag(tau1);
                    sig1 = 1;
                    
                    a = e'*g;
                    tau2 =  (-1*s*a - abs(a))/4;

                    penalty_parameter_1 = halfnorm_inv_n*(tau1 + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e;
                    penalty_parameter_2 = halfnorm_inv_n(tau2)*e;

                    closure = obj.Ji*obj.c^2 * penalty_parameter_1*e' +obj.Ji* penalty_parameter_2*e';
                    penalty = -obj.Ji*obj.c^2 * penalty_parameter_1;
                
        end

        function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I, scale_factor,g] = get_boundary_ops(obj, boundary)

            % gridMatrix = zeros(obj.m(2),obj.m(1));
            % gridMatrix(:) = 1:numel(gridMatrix);

            ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m));

            switch boundary
                case 'w'
                    e = obj.e_w;
                    d_n = obj.du_w;
                    d_t = obj.dv_w;
                    s = -1;

                    I = ind(1,:);
                    coeff_n = obj.a11(I);
                    coeff_t = obj.a12(I);
                    scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2);
                case 'e'
                    e = obj.e_e;
                    d_n = obj.du_e;
                    d_t = obj.dv_e;
                    s = 1;

                    I = ind(end,:);
                    coeff_n = obj.a11(I);
                    coeff_t = obj.a12(I);
                    scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2);
                case 's'
                    e = obj.e_s;
                    d_n = obj.dv_s;
                    d_t = obj.du_s;
                    s = -1;

                    I = ind(:,1)';
                    coeff_n = obj.a22(I);
                    coeff_t = obj.a12(I);
                    scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2);
                case 'n'
                    e = obj.e_n;
                    d_n = obj.dv_n;
                    d_t = obj.du_n;
                    s = 1;

                    I = ind(:,end)';
                    coeff_n = obj.a22(I);
                    coeff_t = obj.a12(I);
                    scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2);
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end

            switch boundary
                case {'w','e'}
                    halfnorm_inv_n = obj.Hiu;
                    halfnorm_inv_t = obj.Hiv;
                    halfnorm_t = obj.Hv;
                    gamm = obj.gamm_u;
                    g=obj.g_1;
                case {'s','n'}
                    halfnorm_inv_n = obj.Hiv;
                    halfnorm_inv_t = obj.Hiu;
                    halfnorm_t = obj.Hu;
                    gamm = obj.gamm_v;
                    g=obj.g_2;
            end
        end

        function N = size(obj)
            N = prod(obj.m);
        end


    end
end