Mercurial > repos > public > sbplib
view +multiblock/DiffOpTimeDep.m @ 708:acb58769610e feature/quantumTriangles
fixed error in diffOp
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Tue, 21 Nov 2017 16:51:51 +0100 |
parents | e6fbdc9ccfc4 |
children | 397d1b22cc37 |
line wrap: on
line source
classdef DiffOpTimeDep < scheme.Scheme properties grid order diffOps D H blockmatrixDiv end methods function obj = DiffOpTimeDep(doHand, grid, order, doParam) % doHand -- may either be a function handle or a cell array of % function handles for each grid. The function handle(s) % should be on the form do = doHand(grid, order, ...) % Additional parameters for each doHand may be provided in % the doParam input. % grid -- a multiblock grid % order -- integer specifying the order of accuracy % doParam -- may either be a cell array or a cell array of cell arrays % for each block. If it is a cell array with length equal % to the number of blocks then each element is sent to the % corresponding function handle as extra parameters: % doHand(..., doParam{i}{:}) Otherwise doParam is sent as % extra parameters to all doHand: doHand(..., doParam{:}) default_arg('doParam', []) [getHand, getParam] = parseInput(doHand, grid, doParam); obj.grid = grid; nBlocks = grid.nBlocks(); obj.order = order; % Create the diffOps for each block obj.diffOps = cell(1, nBlocks); for i = 1:nBlocks h = getHand(i); p = getParam(i); if ~iscell(p) p = {p}; end obj.diffOps{i} = h(grid.grids{i}, order, p{:}); end % Build the norm matrix H = cell(nBlocks, nBlocks); for i = 1:nBlocks H{i,i} = obj.diffOps{i}.H; end obj.H = blockmatrix.toMatrix(H); % Build the differentiation matrix obj.blockmatrixDiv = {grid.Ns, grid.Ns}; % D = blockmatrix.zero(obj.blockmatrixDiv); for i = 1:nBlocks for j = 1:nBlocks D{i,j} = @(t) 0; D{j,i} = @(t) 0; end end for i = 1:nBlocks D{i,i} = @(t)obj.diffOps{i}.D(t); end for i = 1:nBlocks for j = 1:nBlocks intf = grid.connections{i,j}; if isempty(intf) continue end [ii, ij] = obj.diffOps{i}.interface(intf{1}, obj.diffOps{j}, intf{2}); D{i,i} = @(t) D{i,i}(t) + ii(t); D{i,j} = @(t) D{i,j}(t) + ij(t); [jj, ji] = obj.diffOps{j}.interface(intf{2}, obj.diffOps{i}, intf{1}); D{j,j} = @(t) D{j,j}(t) + jj(t); D{j,i} = @(t) D{j,i}(t) + ji(t); end end obj.D = D; function [getHand, getParam] = parseInput(doHand, grid, doParam) if ~isa(grid, 'multiblock.Grid') error('multiblock:DiffOp:DiffOp:InvalidGrid', 'Requires a multiblock grid.'); end if iscell(doHand) && length(doHand) == grid.nBlocks() getHand = @(i)doHand{i}; elseif isa(doHand, 'function_handle') getHand = @(i)doHand; else error('multiblock:DiffOp:DiffOp:InvalidGridDoHand', 'doHand must be a function handle or a cell array of length grid.nBlocks'); end if isempty(doParam) getParam = @(i){}; return end if ~iscell(doParam) getParam = @(i)doParam; return end % doParam is a non-empty cell-array if length(doParam) == grid.nBlocks() && all(cellfun(@iscell, doParam)) % doParam is a cell-array of cell-arrays getParam = @(i)doParam{i}; return end getParam = @(i)doParam; end end function ops = splitOp(obj, op) % Splits a matrix operator into a cell-matrix of matrix operators for % each grid. ops = sparse2cell(op, obj.NNN); end % Get a boundary operator specified by opName for the given boundary/BoundaryGroup function op = getBoundaryOperator(obj, opName, boundary) switch class(boundary) case 'cell' localOpName = [opName '_' boundary{2}]; blockId = boundary{1}; localOp = obj.diffOps{blockId}.(localOpName); div = {obj.blockmatrixDiv{1}, size(localOp,2)}; blockOp = blockmatrix.zero(div); blockOp{blockId,1} = localOp; op = blockmatrix.toMatrix(blockOp); return case 'multiblock.BoundaryGroup' op = sparse(size(obj.D,1),0); for i = 1:length(boundary) op = [op, obj.getBoundaryOperator(opName, boundary{i})]; end otherwise error('Unknown boundary indentifier') end end % Creates the closure and penalty matrix for a given boundary condition, % boundary -- the name of the boundary on the form {id,name} where % id is the number of a block and name is the name of a % boundary of that block example: {1,'s'} or {3,'w'}. It % can also be a boundary group function [closure, penalty] = boundary_condition(obj, boundary, type) switch class(boundary) case 'cell' [closure, penalty] = obj.singleBoundaryCondition(boundary, type); case 'multiblock.BoundaryGroup' nBlocks = obj.grid.nBlocks(); %[n,m] = size(obj.D); %closure = sparse(n,m); %penalty = sparse(n,0); % closure =@(t)0; % penalty = @(t)0; for i = 1:nBlocks for j = 1:nBlocks closure{j,i} = @(t)0; penalty{j,i} = @(t)0; end end for i = 1:length(boundary) boundaryPart = boundary{i}; block = boundaryPart{1}; [closurePart, penaltyPart] = obj.boundary_condition(boundaryPart, type); closure{block,block} = @(t)closure{block,block}(t) + closurePart(t); penalty{block,block} = @(t)penalty{block,block}(t) + penaltyPart(t); end otherwise error('Unknown boundary indentifier') end end function [blockClosure, blockPenalty] = singleBoundaryCondition(obj, boundary, type) I = boundary{1}; name = boundary{2}; % Get the closure and penaly matrices [blockClosure, blockPenalty] = obj.diffOps{I}.boundary_condition(name, type); end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('not implemented') end % Size returns the number of degrees of freedom function N = size(obj) N = 0; for i = 1:length(obj.diffOps) N = N + obj.diffOps{i}.size(); end end end end