Mercurial > repos > public > sbplib
view diracDiscrTest.m @ 648:9e5dd0d3cf60 feature/d1_staggered
Bugfix right boundary in diracDiscr
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Tue, 14 Nov 2017 15:35:51 -0800 |
parents | 46c40711830f |
children | 4ee7d15bd8e6 |
line wrap: on
line source
function tests = diracDiscrTest() tests = functiontests(localfunctions); end function testLeftGP(testCase) orders = [2, 4, 6]; mom_conds = orders; for o = 1:length(orders) order = orders(o); mom_cond = mom_conds(o); [xl, xr, m, h, x, H, fs] = setupStuff(order, mom_cond); % Test left boundary grid points x0s = xl + [0, h, 2*h]; for j = 1:length(fs) f = fs{j}; fx = f(x); for i = 1:length(x0s) x0 = x0s(i); delta = diracDiscr(x0, x, mom_cond, 0, H); integral = delta'*H*fx; err = abs(integral - f(x0)); testCase.verifyLessThan(err, 1e-12); end end end end function testLeftRandom(testCase) orders = [2, 4, 6]; mom_conds = orders; for o = 1:length(orders) order = orders(o); mom_cond = mom_conds(o); [xl, xr, m, h, x, H, fs] = setupStuff(order, mom_cond); % Test random points near left boundary x0s = xl + 2*h*rand(1,10); for j = 1:length(fs) f = fs{j}; fx = f(x); for i = 1:length(x0s) x0 = x0s(i); delta = diracDiscr(x0, x, mom_cond, 0, H); integral = delta'*H*fx; err = abs(integral - f(x0)); testCase.verifyLessThan(err, 1e-12); end end end end function testRightGP(testCase) orders = [2, 4, 6]; mom_conds = orders; for o = 1:length(orders) order = orders(o); mom_cond = mom_conds(o); [xl, xr, m, h, x, H, fs] = setupStuff(order, mom_cond); % Test right boundary grid points x0s = xr-[0, h, 2*h]; for j = 1:length(fs) f = fs{j}; fx = f(x); for i = 1:length(x0s) x0 = x0s(i); delta = diracDiscr(x0, x, mom_cond, 0, H); integral = delta'*H*fx; err = abs(integral - f(x0)); testCase.verifyLessThan(err, 1e-12); end end end end function testRightRandom(testCase) orders = [2, 4, 6]; mom_conds = orders; for o = 1:length(orders) order = orders(o); mom_cond = mom_conds(o); [xl, xr, m, h, x, H, fs] = setupStuff(order, mom_cond); % Test random points near right boundary x0s = xr - 2*h*rand(1,10); for j = 1:length(fs) f = fs{j}; fx = f(x); for i = 1:length(x0s) x0 = x0s(i); delta = diracDiscr(x0, x, mom_cond, 0, H); integral = delta'*H*fx; err = abs(integral - f(x0)); testCase.verifyLessThan(err, 1e-12); end end end end function testInteriorGP(testCase) orders = [2, 4, 6]; mom_conds = orders; for o = 1:length(orders) order = orders(o); mom_cond = mom_conds(o); [xl, xr, m, h, x, H, fs] = setupStuff(order, mom_cond); % Test interior grid points m_half = round(m/2); x0s = xl + (m_half-1:m_half+1)*h; for j = 1:length(fs) f = fs{j}; fx = f(x); for i = 1:length(x0s) x0 = x0s(i); delta = diracDiscr(x0, x, mom_cond, 0, H); integral = delta'*H*fx; err = abs(integral - f(x0)); testCase.verifyLessThan(err, 1e-12); end end end end function testInteriorRandom(testCase) orders = [2, 4, 6]; mom_conds = orders; for o = 1:length(orders) order = orders(o); mom_cond = mom_conds(o); [xl, xr, m, h, x, H, fs] = setupStuff(order, mom_cond); % Test random points in interior x0s = (xl+2*h) + (xr-xl-4*h)*rand(1,20); for j = 1:length(fs) f = fs{j}; fx = f(x); for i = 1:length(x0s) x0 = x0s(i); delta = diracDiscr(x0, x, mom_cond, 0, H); integral = delta'*H*fx; err = abs(integral - f(x0)); testCase.verifyLessThan(err, 1e-12); end end end end % x0 outside grid should yield 0 integral! function testX0OutsideGrid(testCase) orders = [2, 4, 6]; mom_conds = orders; for o = 1:length(orders) order = orders(o); mom_cond = mom_conds(o); [xl, xr, m, h, x, H, fs] = setupStuff(order, mom_cond); % Test points outisde grid x0s = [xl-1.1*h, xr+1.1*h]; for j = 1:length(fs) f = fs{j}; fx = f(x); for i = 1:length(x0s) x0 = x0s(i); delta = diracDiscr(x0, x, mom_cond, 0, H); integral = delta'*H*fx; err = abs(integral - 0); testCase.verifyLessThan(err, 1e-12); end end end end function [xl, xr, m, h, x, H, fs] = setupStuff(order, mom_cond) % Grid xl = -3; xr = 2; m = 21; h = (xr-xl)/(m-1); g = grid.equidistant(m, {xl, xr}); x = g.points(); % Quadrature ops = sbp.D2Standard(m, {xl, xr}, order); H = ops.H; % Moment conditions fs = cell(mom_cond,1); for p = 0:mom_cond-1 fs{p+1} = @(x) x.^p; end end