Mercurial > repos > public > sbplib
view +scheme/Staggered1DAcousticsVariable.m @ 1081:9c74d96fc9e2 feature/d1_staggered
Bugfix in interface SATs, Staggered1DAcousticsVariable
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Tue, 05 Mar 2019 11:18:44 -0800 |
parents | 18e10217dca9 |
children |
line wrap: on
line source
classdef Staggered1DAcousticsVariable < scheme.Scheme properties m % Number of points of primal grid in each direction, possibly a vector h % Grid spacing % Grids grid % Total grid object grid_primal grid_dual order % Order accuracy for the approximation H % Combined norm Hi % Inverse D % Semi-discrete approximation matrix D1_primal D1_dual % Pick out left or right boundary e_l e_r % Initial data v0 % Pick out primal or dual component e_primal e_dual % System matrices, cell matrices of function handles A B % Variable coefficient matrices evaluated at boundaries. A_l, A_r B_l, B_r end methods % Scheme for A*u_t + B u_x = 0, % u = [p, v]; % A: Diagonal and A > 0, % A = [a1, 0; % 0, a2] % % B = B^T and with diagonal entries = 0. % B = [0 b % b 0] % Here we store p on the primal grid and v on the dual % A and B are cell matrices of function handles function obj = Staggered1DAcousticsVariable(g, order, A, B) default_arg('B',{@(x)0*x, @(x)0*x+1; @(x)0*x+1, @(x)0*x}); default_arg('A',{@(x)0*x+1, @(x)0*x; @(x)0*x, @(x)0*x+1}); obj.order = order; obj.A = A; obj.B = B; % Grids obj.m = g.size(); xl = g.getBoundary('l'); xr = g.getBoundary('r'); xlim = {xl, xr}; obj.grid = g; obj.grid_primal = g.grids{1}; obj.grid_dual = g.grids{2}; x_primal = obj.grid_primal.points(); x_dual = obj.grid_dual.points(); % If coefficients are function handles, evaluate them if isa(A{1,1}, 'function_handle') A{1,1} = A{1,1}(x_primal); A{1,2} = A{1,2}(x_dual); A{2,1} = A{2,1}(x_primal); A{2,2} = A{2,2}(x_dual); end if isa(B{1,1}, 'function_handle') B{1,1} = B{1,1}(x_primal); B{1,2} = B{1,2}(x_primal); B{2,1} = B{2,1}(x_dual); B{2,2} = B{2,2}(x_dual); end % If coefficents are vectors, turn them into diagonal matrices [m, n] = size(A{1,1}); if m==1 || n == 1 A{1,1} = spdiag(A{1,1}, 0); A{2,1} = spdiag(A{2,1}, 0); A{1,2} = spdiag(A{1,2}, 0); A{2,2} = spdiag(A{2,2}, 0); end [m, n] = size(B{1,1}); if m==1 || n == 1 B{1,1} = spdiag(B{1,1}, 0); B{2,1} = spdiag(B{2,1}, 0); B{1,2} = spdiag(B{1,2}, 0); B{2,2} = spdiag(B{2,2}, 0); end % Boundary matrices obj.A_l = full([A{1,1}(1,1), A{1,2}(1,1);.... A{2,1}(1,1), A{2,2}(1,1)]); obj.A_r = full([A{1,1}(end,end), A{1,2}(end,end);.... A{2,1}(end,end), A{2,2}(end,end)]); obj.B_l = full([B{1,1}(1,1), B{1,2}(1,1);.... B{2,1}(1,1), B{2,2}(1,1)]); obj.B_r = full([B{1,1}(end,end), B{1,2}(end,end);.... B{2,1}(end,end), B{2,2}(end,end)]); % Get operators ops = sbp.D1StaggeredUpwind(obj.m, xlim, order); obj.h = ops.h; % Build combined operators H_primal = ops.H_primal; H_dual = ops.H_dual; obj.H = blockmatrix.toMatrix( {H_primal, []; [], H_dual } ); obj.Hi = inv(obj.H); D1_primal = ops.D1_primal; D1_dual = ops.D1_dual; A11_B12 = -A{1,1}\B{1,2}; A22_B21 = -A{2,2}\B{2,1}; D = {[], A11_B12*D1_primal;... A22_B21*D1_dual, []}; obj.D = blockmatrix.toMatrix(D); obj.D1_primal = D1_primal; obj.D1_dual = D1_dual; % Combined boundary operators e_primal_l = ops.e_primal_l; e_primal_r = ops.e_primal_r; e_dual_l = ops.e_dual_l; e_dual_r = ops.e_dual_r; e_l = {e_primal_l, [];... [] , e_dual_l}; e_r = {e_primal_r, [];... [] , e_dual_r}; obj.e_l = blockmatrix.toMatrix(e_l); obj.e_r = blockmatrix.toMatrix(e_r); % Pick out first or second component of solution N_primal = obj.grid_primal.N(); N_dual = obj.grid_dual.N(); obj.e_primal = [speye(N_primal, N_primal); sparse(N_dual, N_primal)]; obj.e_dual = [sparse(N_primal, N_dual); speye(N_dual, N_dual)]; end % Closure functions return the operators applied to the own domain to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other domain. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type) default_arg('type','p'); % type = 'p' => boundary condition for p % type = 'v' => boundary condition for v % No other types implemented yet % BC on the form Lu - g = 0; % Need a transformation T such that w = T^{−1}*u is a % meaningful change of variables and T^T*B*T is block-diagonal, % For linear acoustics, T = T_C meets these criteria. % Get boundary matrices switch boundary case 'l' A = obj.A_l; B = obj.B_l; case 'r' A = obj.A_r; B = obj.B_r; end C = inv(A)*B; % Diagonalize C and use T_C to diagonalize B [T, ~] = eig(C); Lambda = T'*B*T; lambda = diag(Lambda); % Identify in- and outgoing characteristic variables Iplus = lambda > 0; Iminus = lambda < 0; switch boundary case 'l' Iin = Iplus; case 'r' Iin = Iminus; end Tin = T(:,Iin); switch type case 'p' L = [1, 0]; case 'v' L = [0, 1]; case 'characteristic' % Diagonalize C [T_C, Lambda_C] = eig(C); lambda_C = diag(Lambda_C); % Identify in- and outgoing characteristic variables Iplus = lambda_C > 0; Iminus = lambda_C < 0; switch boundary case 'l' Iin_C = Iplus; case 'r' Iin_C = Iminus; end T_C_inv = inv(T_C); L = T_C_inv(Iin_C,:); otherwise error('Boundary condition not implemented.'); end % Penalty parameters sigma = [0; 0]; sigma(Iin) = lambda(Iin); % Sparsify A = sparse(A); T = sparse(T); sigma = sparse(sigma); L = sparse(L); Tin = sparse(Tin); switch boundary case 'l' tau = -1*obj.e_l * inv(A) * inv(T)' * sigma * inv(L*Tin); closure = obj.Hi*tau*L*obj.e_l'; case 'r' tau = 1*obj.e_r * inv(A) * inv(T)' * sigma * inv(L*Tin); closure = obj.Hi*tau*L*obj.e_r'; end penalty = -obj.Hi*tau; end % Uses the hat variable method for the interface coupling, % see hypsyst_varcoeff.pdf in the hypsyst repository. % Notation: u for left side of interface, v for right side. function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % Get boundary matrices switch boundary case 'l' A_v = obj.A_l; B_v = obj.B_l; Hi_v = obj.Hi; e_v = obj.e_l; A_u = neighbour_scheme.A_r; B_u = neighbour_scheme.B_r; Hi_u = neighbour_scheme.Hi; e_u = neighbour_scheme.e_r; case 'r' A_u = obj.A_r; B_u = obj.B_r; Hi_u = obj.Hi; e_u = obj.e_r; A_v = neighbour_scheme.A_l; B_v = neighbour_scheme.B_l; Hi_v = neighbour_scheme.Hi; e_v = neighbour_scheme.e_l; end C_u = inv(A_u)*B_u; C_v = inv(A_v)*B_v; % Diagonalize C [T_u, ~] = eig(C_u); Lambda_u = inv(T_u)*C_u*T_u; lambda_u = diag(Lambda_u); S_u = inv(T_u); [T_v, ~] = eig(C_v); Lambda_v = inv(T_v)*C_v*T_v; lambda_v = diag(Lambda_v); S_v = inv(T_v); % Identify in- and outgoing characteristic variables Im_u = lambda_u < 0; Ip_u = lambda_u > 0; Im_v = lambda_v < 0; Ip_v = lambda_v > 0; Tp_u = T_u(:,Ip_u); Tm_u = T_u(:,Im_u); Sp_u = S_u(Ip_u,:); Sm_u = S_u(Im_u,:); Tp_v = T_v(:,Ip_v); Tm_v = T_v(:,Im_v); Sp_v = S_v(Ip_v,:); Sm_v = S_v(Im_v,:); % Create S_tilde and T_tilde Stilde = [Sp_u; Sm_v]; Ttilde = inv(Stilde); Ttilde_p = Ttilde(:,1); Ttilde_m = Ttilde(:,2); % Solve for penalty parameters theta_1,2 LHS = Ttilde_m*Sm_v*Tm_u; RHS = B_u*Tm_u; th_u = RHS./LHS; TH_u = diag(th_u); LHS = Ttilde_p*Sp_u*Tp_v; RHS = -B_v*Tp_v; th_v = RHS./LHS; TH_v = diag(th_v); % Construct penalty matrices Z_u = TH_u*Ttilde_m*Sm_v; Z_u = sparse(Z_u); Z_v = TH_v*Ttilde_p*Sp_u; Z_v = sparse(Z_v); closure_u = Hi_u*e_u*(A_u\Z_u)*e_u'; penalty_u = -Hi_u*e_u*(A_u\Z_u)*e_v'; closure_v = Hi_v*e_v*(A_v\Z_v)*e_v'; penalty_v = -Hi_v*e_v*(A_v\Z_v)*e_u'; switch boundary case 'l' closure = closure_v; penalty = penalty_v; case 'r' closure = closure_u; penalty = penalty_u; end end function N = size(obj) N = 2*obj.m+1; end end methods(Static) % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end