Mercurial > repos > public > sbplib
view +scheme/LaplaceCurvilinearNewCorner.m @ 1067:9a858436f8fa feature/laplace_curvilinear_test
Implement new penalty strength for interface. Bugfix missing coeff a in Dirichlet penalty.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Tue, 22 Jan 2019 18:17:01 -0800 |
parents | d64062bed5fb |
children | e0ecce90f8cf |
line wrap: on
line source
classdef LaplaceCurvilinearNewCorner < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing dim % Number of spatial dimensions grid order % Order of accuracy for the approximation a,b % Parameters of the operator % Inner products and operators for physical coordinates D % Laplace operator H, Hi % Inner product e_w, e_e, e_s, e_n d_w, d_e, d_s, d_n % Normal derivatives at the boundary H_w, H_e, H_s, H_n % Boundary inner products Dx, Dy % Physical derivatives M % Gradient inner product % Metric coefficients J, Ji a11, a12, a22 K x_u x_v y_u y_v s_w, s_e, s_s, s_n % Boundary integral scale factors % Inner product and operators for logical coordinates H_u, H_v % Norms in the x and y directions Hi_u, Hi_v Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hiu, Hiv du_w, dv_w du_e, dv_e du_s, dv_s du_n, dv_n % Borrowing constants theta_M_u, theta_M_v theta_R_u, theta_R_v theta_H_u, theta_H_v % Temporary lambda gamm_u, gamm_v end methods % Implements a*div(b*grad(u)) as a SBP scheme % TODO: Implement proper H, it should be the real physical quadrature, the logic quadrature may be but in a separate variable (H_logic?) function obj = LaplaceCurvilinearNewCorner(g, order, a, b, opSet) default_arg('opSet',@sbp.D2Variable); default_arg('a', 1); default_arg('b', 1); if b ~=1 error('Not implemented yet') end % assert(isa(g, 'grid.Curvilinear')) if isa(a, 'function_handle') a = grid.evalOn(g, a); a = spdiag(a); end dim = 2; m = g.size(); m_u = m(1); m_v = m(2); m_tot = g.N(); h = g.scaling(); h_u = h(1); h_v = h(2); % 1D operators ops_u = opSet(m_u, {0, 1}, order); ops_v = opSet(m_v, {0, 1}, order); I_u = speye(m_u); I_v = speye(m_v); D1_u = ops_u.D1; D2_u = ops_u.D2; H_u = ops_u.H; Hi_u = ops_u.HI; e_l_u = ops_u.e_l; e_r_u = ops_u.e_r; d1_l_u = ops_u.d1_l; d1_r_u = ops_u.d1_r; D1_v = ops_v.D1; D2_v = ops_v.D2; H_v = ops_v.H; Hi_v = ops_v.HI; e_l_v = ops_v.e_l; e_r_v = ops_v.e_r; d1_l_v = ops_v.d1_l; d1_r_v = ops_v.d1_r; % Logical operators Du = kr(D1_u,I_v); Dv = kr(I_u,D1_v); obj.Hu = kr(H_u,I_v); obj.Hv = kr(I_u,H_v); obj.Hiu = kr(Hi_u,I_v); obj.Hiv = kr(I_u,Hi_v); e_w = kr(e_l_u,I_v); e_e = kr(e_r_u,I_v); e_s = kr(I_u,e_l_v); e_n = kr(I_u,e_r_v); obj.du_w = kr(d1_l_u,I_v); obj.dv_w = (e_w'*Dv)'; obj.du_e = kr(d1_r_u,I_v); obj.dv_e = (e_e'*Dv)'; obj.du_s = (e_s'*Du)'; obj.dv_s = kr(I_u,d1_l_v); obj.du_n = (e_n'*Du)'; obj.dv_n = kr(I_u,d1_r_v); % Metric coefficients coords = g.points(); x = coords(:,1); y = coords(:,2); x_u = Du*x; x_v = Dv*x; y_u = Du*y; y_v = Dv*y; J = x_u.*y_v - x_v.*y_u; a11 = 1./J .* (x_v.^2 + y_v.^2); a12 = -1./J .* (x_u.*x_v + y_u.*y_v); a22 = 1./J .* (x_u.^2 + y_u.^2); lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); K = cell(dim, dim); K{1,1} = spdiag(y_v./J); K{1,2} = spdiag(-y_u./J); K{2,1} = spdiag(-x_v./J); K{2,2} = spdiag(x_u./J); obj.K = K; obj.x_u = x_u; obj.x_v = x_v; obj.y_u = y_u; obj.y_v = y_v; % Assemble full operators L_12 = spdiag(a12); Duv = Du*L_12*Dv; Dvu = Dv*L_12*Du; Duu = sparse(m_tot); Dvv = sparse(m_tot); ind = grid.funcToMatrix(g, 1:m_tot); for i = 1:m_v D = D2_u(a11(ind(:,i))); p = ind(:,i); Duu(p,p) = D; end for i = 1:m_u D = D2_v(a22(ind(i,:))); p = ind(i,:); Dvv(p,p) = D; end % Physical operators obj.J = spdiag(J); obj.Ji = spdiag(1./J); obj.D = obj.Ji*a*(Duu + Duv + Dvu + Dvv); obj.H = obj.J*kr(H_u,H_v); obj.Hi = obj.Ji*kr(Hi_u,Hi_v); obj.e_w = e_w; obj.e_e = e_e; obj.e_s = e_s; obj.e_n = e_n; %% normal derivatives I_w = ind(1,:); I_e = ind(end,:); I_s = ind(:,1); I_n = ind(:,end); a11_w = spdiag(a11(I_w)); a12_w = spdiag(a12(I_w)); a11_e = spdiag(a11(I_e)); a12_e = spdiag(a12(I_e)); a22_s = spdiag(a22(I_s)); a12_s = spdiag(a12(I_s)); a22_n = spdiag(a22(I_n)); a12_n = spdiag(a12(I_n)); s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2); s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2); s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2); s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2); obj.d_w = -1*(spdiag(1./s_w)*(a11_w*obj.du_w' + a12_w*obj.dv_w'))'; obj.d_e = (spdiag(1./s_e)*(a11_e*obj.du_e' + a12_e*obj.dv_e'))'; obj.d_s = -1*(spdiag(1./s_s)*(a22_s*obj.dv_s' + a12_s*obj.du_s'))'; obj.d_n = (spdiag(1./s_n)*(a22_n*obj.dv_n' + a12_n*obj.du_n'))'; obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; %% Boundary inner products obj.H_w = H_v*spdiag(s_w); obj.H_e = H_v*spdiag(s_e); obj.H_s = H_u*spdiag(s_s); obj.H_n = H_u*spdiag(s_n); % Misc. obj.m = m; obj.h = [h_u h_v]; obj.order = order; obj.grid = g; obj.dim = dim; obj.a = a; obj.b = b; obj.a11 = a11; obj.a12 = a12; obj.a22 = a22; obj.s_w = spdiag(s_w); obj.s_e = spdiag(s_e); obj.s_s = spdiag(s_s); obj.s_n = spdiag(s_n); obj.theta_M_u = h_u*ops_u.borrowing.M.d1; obj.theta_M_v = h_v*ops_v.borrowing.M.d1; obj.theta_R_u = h_u*ops_u.borrowing.R.delta_D; obj.theta_R_v = h_v*ops_v.borrowing.R.delta_D; obj.theta_H_u = h_u*ops_u.borrowing.H11; obj.theta_H_v = h_v*ops_v.borrowing.H11; % Temporary obj.lambda = lambda; obj.gamm_u = h_u*ops_u.borrowing.M.d1; obj.gamm_v = h_v*ops_v.borrowing.M.d1; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) default_arg('type','neumann'); default_arg('parameter', []); e = obj.getBoundaryOperator('e', boundary); d = obj.getBoundaryOperator('d', boundary); H_b = obj.getBoundaryQuadrature(boundary); s_b = obj.getBoundaryScaling(boundary); [th_H, ~, th_R] = obj.getBoundaryBorrowing(boundary); m = obj.getBoundaryNumber(boundary); K = obj.K; J = obj.J; Hi = obj.Hi; a = obj.a; switch type % Dirichlet boundary condition case {'D','d','dirichlet'} tuning = 1.0; sigma = 0; for i = 1:obj.dim sigma = sigma + e'*J*K{i,m}*K{i,m}*e; end sigma = sigma/s_b; % tau = tuning*(1/th_R + obj.dim/th_H)*sigma; tau_R = 1/th_R*sigma; tau_H = 1/th_H*sigma; tau_H(1,1) = obj.dim*tau_H(1,1); tau_H(end,end) = obj.dim*tau_H(end,end); tau = tuning*(tau_R + tau_H); closure = a*Hi*d*H_b*e' ... -a*Hi*e*tau*H_b*e'; penalty = -a*Hi*d*H_b ... +a*Hi*e*tau*H_b; % Neumann boundary condition case {'N','n','neumann'} tau1 = -1; tau2 = 0; tau = (tau1*e + tau2*d)*H_b; closure = a*Hi*tau*d'; penalty = -a*Hi*tau; % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end % type Struct that specifies the interface coupling. % Fields: % -- tuning: penalty strength, defaults to 1.2 % -- interpolation: type of interpolation, default 'none' function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) % error('Not implemented') defaultType.tuning = 1.0; defaultType.interpolation = 'none'; default_struct('type', defaultType); switch type.interpolation case {'none', ''} [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); case {'op','OP'} [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); otherwise error('Unknown type of interpolation: %s ', type.interpolation); end end function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) tuning = type.tuning; dim = obj.dim; % u denotes the solution in the own domain % v denotes the solution in the neighbour domain u = obj; v = neighbour_scheme; % Boundary operators, u e_u = u.getBoundaryOperator('e', boundary); d_u = u.getBoundaryOperator('d', boundary); gamm_u = u.getBoundaryBorrowing(boundary); s_b_u = u.getBoundaryScaling(boundary); [th_H_u, ~, th_R_u] = u.getBoundaryBorrowing(boundary); m_u = u.getBoundaryNumber(boundary); % Coefficients, u K_u = u.K; J_u = u.J; % Boundary operators, v e_v = v.getBoundaryOperator('e', neighbour_boundary); d_v = v.getBoundaryOperator('d', neighbour_boundary); gamm_v = v.getBoundaryBorrowing(neighbour_boundary); s_b_v = v.getBoundaryScaling(neighbour_boundary); [th_H_v, ~, th_R_v] = v.getBoundaryBorrowing(neighbour_boundary); m_v = v.getBoundaryNumber(neighbour_boundary); % Coefficients, v K_v = v.K; J_v = v.J; %--- Penalty strength tau ------------- sigma_u = 0; sigma_v = 0; for i = 1:obj.dim sigma_u = sigma_u + e_u'*J_u*K_u{i,m_u}*K_u{i,m_u}*e_u; sigma_v = sigma_v + e_v'*J_v*K_v{i,m_v}*K_v{i,m_v}*e_v; end sigma_u = sigma_u/s_b_u; sigma_v = sigma_v/s_b_v; tau_R_u = 1/th_R_u*sigma_u; tau_R_v = 1/th_R_v*sigma_v; tau_H_u = 1/th_H_u*sigma_u; tau_H_u(1,1) = dim*tau_H_u(1,1); tau_H_u(end,end) = dim*tau_H_u(end,end); tau_H_v = 1/th_H_v*sigma_v; tau_H_v(1,1) = dim*tau_H_v(1,1); tau_H_v(end,end) = dim*tau_H_v(end,end); tau = 1/4*tuning*(tau_R_u + tau_H_u + tau_R_v + tau_H_v); %-------------------------------------- % Operators/coefficients that are only required from this side Hi = u.Hi; H_b = u.getBoundaryQuadrature(boundary); a = u.a; closure = 1/2*a*Hi*d_u*H_b*e_u' ... -1/2*a*Hi*e_u*H_b*d_u' ... -a*Hi*e_u*tau*H_b*e_u'; penalty = -1/2*a*Hi*d_u*H_b*e_v' ... -1/2*a*Hi*e_u*H_b*d_v' ... +a*Hi*e_u*tau*H_b*e_v'; end function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) % TODO: Make this work for curvilinear grids warning('LaplaceCurvilinear: Non-conforming grid interpolation only works for Cartesian grids.'); warning('LaplaceCurvilinear: Non-conforming interface uses Virtas penalty strength'); % User can request special interpolation operators by specifying type.interpOpSet default_field(type, 'interpOpSet', @sbp.InterpOpsOP); interpOpSet = type.interpOpSet; tuning = type.tuning; % u denotes the solution in the own domain % v denotes the solution in the neighbour domain e_u = obj.getBoundaryOperator('e', boundary); d_u = obj.getBoundaryOperator('d', boundary); H_b_u = obj.getBoundaryQuadrature(boundary); I_u = obj.getBoundaryIndices(boundary); gamm_u = obj.getBoundaryBorrowing(boundary); e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); d_v = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary); H_b_v = neighbour_scheme.getBoundaryQuadrature(neighbour_boundary); I_v = neighbour_scheme.getBoundaryIndices(neighbour_boundary); gamm_v = neighbour_scheme.getBoundaryBorrowing(neighbour_boundary); % Find the number of grid points along the interface m_u = size(e_u, 2); m_v = size(e_v, 2); Hi = obj.Hi; a = obj.a; u = obj; v = neighbour_scheme; b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; tau_u = -1./(4*b1_u) -1./(4*b2_u); tau_v = -1./(4*b1_v) -1./(4*b2_v); tau_u = tuning * spdiag(tau_u); tau_v = tuning * spdiag(tau_v); beta_u = tau_v; % Build interpolation operators intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); Iu2v = intOps.Iu2v; Iv2u = intOps.Iv2u; closure = a*Hi*e_u*tau_u*H_b_u*e_u' + ... a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*Iu2v.good*e_u' + ... a*1/2*Hi*d_u*H_b_u*e_u' + ... -a*1/2*Hi*e_u*H_b_u*d_u'; penalty = -a*Hi*e_u*tau_u*H_b_u*Iv2u.good*e_v' + ... -a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*e_v' + ... -a*1/2*Hi*d_u*H_b_u*Iv2u.good*e_v' + ... -a*1/2*Hi*e_u*H_b_u*Iv2u.bad*d_v'; end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string % boundary -- string function o = getBoundaryOperator(obj, op, boundary) assertIsMember(op, {'e', 'd'}) assertIsMember(boundary, {'w', 'e', 's', 'n'}) o = obj.([op, '_', boundary]); end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary points % % boundary -- string function H_b = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) H_b = obj.(['H_', boundary]); end % Returns square boundary quadrature scaling matrix, of dimension % corresponding to the number of boundary points % % boundary -- string function s_b = getBoundaryScaling(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) s_b = obj.(['s_', boundary]); end % Returns the coordinate number corresponding to the boundary % % boundary -- string function m = getBoundaryNumber(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) switch boundary case {'w', 'e'} m = 1; case {'s', 'n'} m = 2; end end % Returns the indices of the boundary points in the grid matrix % boundary -- string function I = getBoundaryIndices(obj, boundary) ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); switch boundary case 'w' I = ind(1,:); case 'e' I = ind(end,:); case 's' I = ind(:,1)'; case 'n' I = ind(:,end)'; otherwise error('No such boundary: boundary = %s',boundary); end end % Returns borrowing constant gamma % boundary -- string function [theta_H, theta_M, theta_R] = getBoundaryBorrowing(obj, boundary) switch boundary case {'w','e'} theta_H = obj.theta_H_u; theta_M = obj.theta_M_u; theta_R = obj.theta_R_u; case {'s','n'} theta_H = obj.theta_H_v; theta_M = obj.theta_M_v; theta_R = obj.theta_R_v; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = prod(obj.m); end end end