Mercurial > repos > public > sbplib
view +sbp/+implementations/d4_variable_6_2.m @ 318:99005a80b4c2 feature/beams
Cleaned up d4_variable_4_min_boundary. Removed incorrect D2s from a bunch of files.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 26 Sep 2016 08:44:17 +0200 |
parents | 203afa156f59 |
children | 5c9e5ba1c1ab |
line wrap: on
line source
function [H, HI, D1, D2, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_2(m,h) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% 6:te ordn. SBP Finita differens %%% %%% operatorer med diagonal norm %%% %%% Extension to variable koeff %%% %%% %%% %%% H (Normen) %%% %%% D1=H^(-1)Q (approx f?rsta derivatan) %%% %%% D2 (approx andra derivatan) %%% %%% D2=HI*(R+C*D*S %%% %%% %%% %%% R=-D1'*H*C*D1-RR %%% %%% %%% %%% RR ?r dissipation) %%% %%% Dissipationen uppbyggd av D4: %%% %%% DI=D4*B*H*D4 %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % H?r med 6 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator % Denna ?r noggrannare, och har 2a ordningens randdslutning och b?r ge 6te % ordningens konvergens. Hade dock ingen fri parameter att optimera H = diag(ones(m,1),0); H(1:6,1:6) = [ 0.181e3/0.576e3 0 0 0 0 0; 0 0.1343e4/0.960e3 0 0 0 0; 0 0 0.293e3/0.480e3 0 0 0; 0 0 0 0.1811e4/0.1440e4 0 0; 0 0 0 0 0.289e3/0.320e3 0; 0 0 0 0 0 0.65e2/0.64e2; ]; H(m-5:m,m-5:m) = fliplr(flipud(H(1:6,1:6))); e_1 = zeros(m,1);e_1(1) = 1; e_m = zeros(m,1);e_m(m) = 1; S_U = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h; S_1 = zeros(1,m); S_1(1:6) = S_U; S_m = zeros(1,m); S_m(m-5:m) = fliplr(-S_U); S2_U = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2; S2_1 = zeros(1,m); S2_1(1:6) = S2_U; S2_m = zeros(1,m); S2_m(m-5:m) = fliplr(S2_U); S3_U = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3; S3_1 = zeros(1,m); S3_1(1:6) = S3_U; S3_m = zeros(1,m); S3_m(m-5:m) = fliplr(-S3_U); H = h*H; HI = inv(H); % Fourth derivative, 1th order accurate at first 8 boundary points (still % yield 5th order convergence if stable: for example u_tt = -u_xxxx m4 = 7/240; m3 = -2/5; m2 = 169/60; m1 = -122/15; m0 = 91/8; M4 = m4*(diag(ones(m-4,1),4)+diag(ones(m-4,1),-4))+m3*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3))+m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); %M4 = (-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); M4_U = [ 0.1009e4/0.192e3 -0.7657e4/0.480e3 0.9307e4/0.480e3 -0.509e3/0.40e2 0.4621e4/0.960e3 -0.25e2/0.32e2; -0.7657e4/0.480e3 0.49513e5/0.960e3 -0.4007e4/0.60e2 0.21799e5/0.480e3 -0.8171e4/0.480e3 0.2657e4/0.960e3; 0.9307e4/0.480e3 -0.4007e4/0.60e2 0.1399e4/0.15e2 -0.2721e4/0.40e2 0.12703e5/0.480e3 -0.521e3/0.120e3; -0.509e3/0.40e2 0.21799e5/0.480e3 -0.2721e4/0.40e2 0.3349e4/0.60e2 -0.389e3/0.15e2 0.559e3/0.96e2; 0.4621e4/0.960e3 -0.8171e4/0.480e3 0.12703e5/0.480e3 -0.389e3/0.15e2 0.17857e5/0.960e3 -0.1499e4/0.160e3; -0.25e2/0.32e2 0.2657e4/0.960e3 -0.521e3/0.120e3 0.559e3/0.96e2 -0.1499e4/0.160e3 0.2225e4/0.192e3; ]; M4(1:6,1:6) = M4_U; M4(m-5:m,m-5:m) = flipud( fliplr( M4_U ) ); M4 = M4/h^3; D4 = HI*(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); end