Mercurial > repos > public > sbplib
view +time/CdiffNonlin.m @ 4:8e14b5a577a6
Attempt att optimization of CdiffNonlin.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 18 Sep 2015 15:12:44 +0200 |
parents | 5ae4f23d9130 |
children | b18d3d201a71 |
line wrap: on
line source
classdef CdiffNonlin < time.Timestepper properties D E S k t v v_prev n end methods function obj = CdiffNonlin(D, E, S, k, t0, v, v_prev) m = size(D(v),1); default_arg('E',@(v)sparse(m,m)); default_arg('S',@(v,t)sparse(m,1)); % m = size(D,1); % default_arg('E',sparse(m,m)); % default_arg('S',sparse(m,1)); obj.D = D; obj.E = E; obj.S = S; obj.k = k; obj.t = t0; obj.v = v; obj.v_prev = v_prev; end function [v,t] = getV(obj) v = obj.v; t = obj.t; end function [vt,t] = getVt(obj) vt = (obj.v-obj.v_prev)/obj.k; % Could be improved using u_tt = f(u)) t = obj.t; end function obj = step(obj) D = obj.D(obj.v); E = obj.E(obj.v); S = obj.S(obj.v); m = size(D,1); I = speye(m); %% Calculate for which indices we need to solve system of equations [rows,cols] = find(E); j = union(rows,cols); i = setdiff(1:m,j); %% Calculate matrices need for the timestep % Before optimization: A = 1/k^2 * I - 1/(2*k)*E; k = obj.k; Aj = 1/k^2 * I(j,j) - 1/(2*k)*E(j,j); B = 2/k^2 * I + D; C = -1/k^2 * I - 1/(2*k)*E; %% Take the timestep v = obj.v; % Before optimization: obj.v = A\(B*v + C*v_prev + S); obj.v(i) = k^2*(B(i,i)*v(i) -1/k^2*obj.v_prev(i) + S(i)); obj.v(j) = Aj\(B(j,j)*v(j) + C(j,j)*obj.v_prev(j) + S(j)); obj.v_prev = v; %% Update state of the timestepper obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end end