Mercurial > repos > public > sbplib
view +scheme/LaplaceCurvilinear.m @ 1036:8a9393084b30 feature/burgers1d
Change argument order to the "correct" order, i.e providing diffOp specific parameters before the opSet.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 08:58:26 +0100 |
parents | 706d1c2b4199 |
children | a0b3161e44f3 |
line wrap: on
line source
classdef LaplaceCurvilinear < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing grid order % Order accuracy for the approximation a,b % Parameters of the operator % Inner products and operators for physical coordinates D % Laplace operator H, Hi % Inner product e_w, e_e, e_s, e_n d_w, d_e, d_s, d_n % Normal derivatives at the boundary H_w, H_e, H_s, H_n % Boundary inner products Dx, Dy % Physical derivatives M % Gradient inner product % Metric coefficients J, Ji a11, a12, a22 x_u x_v y_u y_v % Inner product and operators for logical coordinates H_u, H_v % Norms in the x and y directions Hi_u, Hi_v Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hiu, Hiv du_w, dv_w du_e, dv_e du_s, dv_s du_n, dv_n gamm_u, gamm_v lambda end methods % Implements a*div(b*grad(u)) as a SBP scheme % TODO: Implement proper H, it should be the real physical quadrature, the logic quadrature may be but in a separate variable (H_logic?) function obj = LaplaceCurvilinear(g ,order, a, b, opSet) default_arg('opSet',@sbp.D2Variable); default_arg('a', 1); default_arg('b', 1); if b ~=1 error('Not implemented yet') end % assert(isa(g, 'grid.Curvilinear')) if isa(a, 'function_handle') a = grid.evalOn(g, a); a = spdiag(a); end m = g.size(); m_u = m(1); m_v = m(2); m_tot = g.N(); h = g.scaling(); h_u = h(1); h_v = h(2); % 1D operators ops_u = opSet(m_u, {0, 1}, order); ops_v = opSet(m_v, {0, 1}, order); I_u = speye(m_u); I_v = speye(m_v); D1_u = ops_u.D1; D2_u = ops_u.D2; H_u = ops_u.H; Hi_u = ops_u.HI; e_l_u = ops_u.e_l; e_r_u = ops_u.e_r; d1_l_u = ops_u.d1_l; d1_r_u = ops_u.d1_r; D1_v = ops_v.D1; D2_v = ops_v.D2; H_v = ops_v.H; Hi_v = ops_v.HI; e_l_v = ops_v.e_l; e_r_v = ops_v.e_r; d1_l_v = ops_v.d1_l; d1_r_v = ops_v.d1_r; % Logical operators Du = kr(D1_u,I_v); Dv = kr(I_u,D1_v); obj.Hu = kr(H_u,I_v); obj.Hv = kr(I_u,H_v); obj.Hiu = kr(Hi_u,I_v); obj.Hiv = kr(I_u,Hi_v); e_w = kr(e_l_u,I_v); e_e = kr(e_r_u,I_v); e_s = kr(I_u,e_l_v); e_n = kr(I_u,e_r_v); obj.du_w = kr(d1_l_u,I_v); obj.dv_w = (e_w'*Dv)'; obj.du_e = kr(d1_r_u,I_v); obj.dv_e = (e_e'*Dv)'; obj.du_s = (e_s'*Du)'; obj.dv_s = kr(I_u,d1_l_v); obj.du_n = (e_n'*Du)'; obj.dv_n = kr(I_u,d1_r_v); % Metric coefficients coords = g.points(); x = coords(:,1); y = coords(:,2); x_u = Du*x; x_v = Dv*x; y_u = Du*y; y_v = Dv*y; J = x_u.*y_v - x_v.*y_u; a11 = 1./J .* (x_v.^2 + y_v.^2); a12 = -1./J .* (x_u.*x_v + y_u.*y_v); a22 = 1./J .* (x_u.^2 + y_u.^2); lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); obj.x_u = x_u; obj.x_v = x_v; obj.y_u = y_u; obj.y_v = y_v; % Assemble full operators L_12 = spdiag(a12); Duv = Du*L_12*Dv; Dvu = Dv*L_12*Du; Duu = sparse(m_tot); Dvv = sparse(m_tot); ind = grid.funcToMatrix(g, 1:m_tot); for i = 1:m_v D = D2_u(a11(ind(:,i))); p = ind(:,i); Duu(p,p) = D; end for i = 1:m_u D = D2_v(a22(ind(i,:))); p = ind(i,:); Dvv(p,p) = D; end % Physical operators obj.J = spdiag(J); obj.Ji = spdiag(1./J); obj.D = obj.Ji*a*(Duu + Duv + Dvu + Dvv); obj.H = obj.J*kr(H_u,H_v); obj.Hi = obj.Ji*kr(Hi_u,Hi_v); obj.e_w = e_w; obj.e_e = e_e; obj.e_s = e_s; obj.e_n = e_n; %% normal derivatives I_w = ind(1,:); I_e = ind(end,:); I_s = ind(:,1); I_n = ind(:,end); a11_w = spdiag(a11(I_w)); a12_w = spdiag(a12(I_w)); a11_e = spdiag(a11(I_e)); a12_e = spdiag(a12(I_e)); a22_s = spdiag(a22(I_s)); a12_s = spdiag(a12(I_s)); a22_n = spdiag(a22(I_n)); a12_n = spdiag(a12(I_n)); s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2); s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2); s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2); s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2); obj.d_w = -1*(spdiag(1./s_w)*(a11_w*obj.du_w' + a12_w*obj.dv_w'))'; obj.d_e = (spdiag(1./s_e)*(a11_e*obj.du_e' + a12_e*obj.dv_e'))'; obj.d_s = -1*(spdiag(1./s_s)*(a22_s*obj.dv_s' + a12_s*obj.du_s'))'; obj.d_n = (spdiag(1./s_n)*(a22_n*obj.dv_n' + a12_n*obj.du_n'))'; obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; %% Boundary inner products obj.H_w = H_v*spdiag(s_w); obj.H_e = H_v*spdiag(s_e); obj.H_s = H_u*spdiag(s_s); obj.H_n = H_u*spdiag(s_n); % Misc. obj.m = m; obj.h = [h_u h_v]; obj.order = order; obj.grid = g; obj.a = a; obj.b = b; obj.a11 = a11; obj.a12 = a12; obj.a22 = a22; obj.lambda = lambda; obj.gamm_u = h_u*ops_u.borrowing.M.d1; obj.gamm_v = h_v*ops_v.borrowing.M.d1; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) default_arg('type','neumann'); default_arg('parameter', []); [e, d, gamm, H_b, ~] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} tuning = 1.2; % tuning = 20.2; b1 = gamm*obj.lambda./obj.a11.^2; b2 = gamm*obj.lambda./obj.a22.^2; tau1 = tuning * spdiag(-1./b1 - 1./b2); tau2 = 1; tau = (tau1*e + tau2*d)*H_b; closure = obj.a*obj.Hi*tau*e'; penalty = -obj.a*obj.Hi*tau; % Neumann boundary condition case {'N','n','neumann'} tau1 = -1; tau2 = 0; tau = (tau1*e + tau2*d)*H_b; closure = obj.a*obj.Hi*tau*d'; penalty = -obj.a*obj.Hi*tau; % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end % type Struct that specifies the interface coupling. % Fields: % -- tuning: penalty strength, defaults to 1.2 % -- interpolation: type of interpolation, default 'none' function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) defaultType.tuning = 1.2; defaultType.interpolation = 'none'; default_struct('type', defaultType); switch type.interpolation case {'none', ''} [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); case {'op','OP'} [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); otherwise error('Unknown type of interpolation: %s ', type.interpolation); end end function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) tuning = type.tuning; % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u, d_u, gamm_u, H_b_u, I_u] = obj.get_boundary_ops(boundary); [e_v, d_v, gamm_v, H_b_v, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); u = obj; v = neighbour_scheme; b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; tau1 = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); tau1 = tuning * spdiag(tau1); tau2 = 1/2; sig1 = -1/2; sig2 = 0; tau = (e_u*tau1 + tau2*d_u)*H_b_u; sig = (sig1*e_u + sig2*d_u)*H_b_u; closure = obj.a*obj.Hi*( tau*e_u' + sig*d_u'); penalty = obj.a*obj.Hi*(-tau*e_v' + sig*d_v'); end function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) % TODO: Make this work for curvilinear grids warning('LaplaceCurvilinear: Non-conforming grid interpolation only works for Cartesian grids.'); % User can request special interpolation operators by specifying type.interpOpSet default_field(type, 'interpOpSet', @sbp.InterpOpsOP); interpOpSet = type.interpOpSet; tuning = type.tuning; % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u, d_u, gamm_u, H_b_u, I_u] = obj.get_boundary_ops(boundary); [e_v, d_v, gamm_v, H_b_v, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); % Find the number of grid points along the interface m_u = size(e_u, 2); m_v = size(e_v, 2); Hi = obj.Hi; a = obj.a; u = obj; v = neighbour_scheme; b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; tau_u = -1./(4*b1_u) -1./(4*b2_u); tau_v = -1./(4*b1_v) -1./(4*b2_v); tau_u = tuning * spdiag(tau_u); tau_v = tuning * spdiag(tau_v); beta_u = tau_v; % Build interpolation operators intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); Iu2v = intOps.Iu2v; Iv2u = intOps.Iv2u; closure = a*Hi*e_u*tau_u*H_b_u*e_u' + ... a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*Iu2v.good*e_u' + ... a*1/2*Hi*d_u*H_b_u*e_u' + ... -a*1/2*Hi*e_u*H_b_u*d_u'; penalty = -a*Hi*e_u*tau_u*H_b_u*Iv2u.good*e_v' + ... -a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*e_v' + ... -a*1/2*Hi*d_u*H_b_u*Iv2u.good*e_v' + ... -a*1/2*Hi*e_u*H_b_u*Iv2u.bad*d_v'; end % Returns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary % % I -- the indices of the boundary points in the grid matrix function [e, d, gamm, H_b, I] = get_boundary_ops(obj, boundary) ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); switch boundary case 'w' e = obj.e_w; d = obj.d_w; H_b = obj.H_w; I = ind(1,:); case 'e' e = obj.e_e; d = obj.d_e; H_b = obj.H_e; I = ind(end,:); case 's' e = obj.e_s; d = obj.d_s; H_b = obj.H_s; I = ind(:,1)'; case 'n' e = obj.e_n; d = obj.d_n; H_b = obj.H_n; I = ind(:,end)'; otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','e'} gamm = obj.gamm_u; case {'s','n'} gamm = obj.gamm_v; end end function N = size(obj) N = prod(obj.m); end end end