Mercurial > repos > public > sbplib
view +scheme/Laplace1d.m @ 1253:89dad61cad22 feature/poroelastic
Make Elastic2dVariable faster and more memory efficient
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Tue, 04 Feb 2020 10:15:42 -0800 |
parents | cab047de7f5d |
children | 2b1b944deae1 c12b84fe9b00 |
line wrap: on
line source
classdef Laplace1d < scheme.Scheme properties grid order % Order accuracy for the approximation D % non-stabalized scheme operator H % Discrete norm M % Derivative norm a D2 Hi e_l e_r d_l d_r gamm end methods function obj = Laplace1d(grid, order, a) default_arg('a', 1); assertType(grid, 'grid.Cartesian'); ops = sbp.D2Standard(grid.size(), grid.lim{1}, order); obj.D2 = sparse(ops.D2); obj.H = sparse(ops.H); obj.Hi = sparse(ops.HI); obj.M = sparse(ops.M); obj.e_l = sparse(ops.e_l); obj.e_r = sparse(ops.e_r); obj.d_l = -sparse(ops.d1_l); obj.d_r = sparse(ops.d1_r); obj.grid = grid; obj.order = order; obj.a = a; obj.D = a*obj.D2; obj.gamm = grid.h*ops.borrowing.M.S; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','neumann'); default_arg('data',0); [e,d,s] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','dirichlet'} tuning = 1.1; tau1 = -tuning/obj.gamm; tau2 = 1; tau = tau1*e + tau2*d; closure = obj.a*obj.Hi*tau*e'; penalty = obj.a*obj.Hi*tau; % Neumann boundary condition case {'N','neumann'} tau = -e; closure = obj.a*obj.Hi*tau*d'; penalty = -obj.a*obj.Hi*tau; % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); a_u = obj.a; a_v = neighbour_scheme.a; gamm_u = obj.gamm; gamm_v = neighbour_scheme.gamm; tuning = 1.1; tau1 = -(a_u/gamm_u + a_v/gamm_v) * tuning; tau2 = 1/2*a_u; sig1 = -1/2; sig2 = 0; tau = tau1*e_u + tau2*d_u; sig = sig1*e_u + sig2*d_u; closure = obj.Hi*( tau*e_u' + sig*a_u*d_u'); penalty = obj.Hi*(-tau*e_v' + sig*a_v*d_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e,d,s] = get_boundary_ops(obj,boundary) switch boundary case 'l' e = obj.e_l; d = obj.d_l; s = -1; case 'r' e = obj.e_r; d = obj.d_r; s = 1; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = obj.grid.size(); end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end