Mercurial > repos > public > sbplib
view +noname/calculateErrors.m @ 616:818d52d4928f feature/grids
Add helper function for convergence runs on discretizations
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 11 Oct 2017 16:01:22 +0200 |
parents | |
children | b59345f905f0 |
line wrap: on
line source
% [discr, trueSolution] = schemeFactory(m) % where trueSolution should be a timeSnapshot of the true solution a time T % T is the end time % m are grid size parameters. % N are number of timesteps to use for each gird size % timeOpt are options for the timeStepper function e = calculateErrors(schemeFactory, T, m, N, errorFun, timeOpt) assertType(schemeFactory, 'function_handle'); assertNumberOfArguments(schemeFactory, 1); assertScalar(T); assert(length(m) == length(N), 'Vectors m and N must have the same length'); assertType(errorFun, 'function_handle'); assertNumberOfArguments(errorFun, 2); default_arg('timeOpt'); e = []; for i = 1:length(m) done = timeTask('m = %3d ', m(i)); [discr, trueSolution] = schemeFactory(m(i)); timeOpt.k = T/N(i); ts = discr.getTimestepper(timeOpt); ts.stepTo(N(i), true); approxSolution = discr.getTimeSnapshot(ts); e(i) = errorFun(trueSolution, approxSolution); fprintf('e = %.4e', e(i)) done() end fprintf('\n') end %% Example error function % u_true = grid.evalOn(dr.grid, @(x,y)trueSolution(T,x,y)); % err = u_true-u_false; % e(i) = norm(err)/norm(u_true); % % e(i) = sqrt(err'*d.H*d.J*err/(u_true'*d.H*d.J*u_true));