Mercurial > repos > public > sbplib
view +scheme/Utux2d.m @ 1327:7ab7d42a5b24 feature/D2_boundary_opt
Fix typo in comment
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 14 Feb 2022 10:49:49 +0100 |
parents | 84200bbae101 |
children | 433c89bf19e0 |
line wrap: on
line source
classdef Utux2d < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing grid % Grid order % Order accuracy for the approximation v0 % Initial data a % Wave speed a = [a1, a2]; % Can either be a constant vector or a cell array of function handles. H % Discrete norm H_x, H_y % Norms in the x and y directions Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms H_w, H_e, H_s, H_n % Boundary quadratures % Derivatives Dx, Dy % Boundary operators e_w, e_e, e_s, e_n D % Total discrete operator end methods function obj = Utux2d(g ,order, opSet, a) default_arg('a',1/sqrt(2)*[1, 1]); default_arg('opSet',@sbp.D2Standard); assertType(g, 'grid.Cartesian'); if iscell(a) a1 = grid.evalOn(g, a{1}); a2 = grid.evalOn(g, a{2}); a = {spdiag(a1), spdiag(a2)}; else a = {a(1), a(2)}; end m = g.size(); m_x = m(1); m_y = m(2); m_tot = g.N(); xlim = {g.x{1}(1), g.x{1}(end)}; ylim = {g.x{2}(1), g.x{2}(end)}; obj.grid = g; % Operator sets ops_x = opSet(m_x, xlim, order); ops_y = opSet(m_y, ylim, order); Ix = speye(m_x); Iy = speye(m_y); % Norms Hx = ops_x.H; Hy = ops_y.H; Hxi = ops_x.HI; Hyi = ops_y.HI; obj.H_w = Hy; obj.H_e = Hy; obj.H_s = Hx; obj.H_n = Hx; obj.H_x = Hx; obj.H_y = Hy; obj.H = kron(Hx,Hy); obj.Hi = kron(Hxi,Hyi); obj.Hx = kron(Hx,Iy); obj.Hy = kron(Ix,Hy); obj.Hxi = kron(Hxi,Iy); obj.Hyi = kron(Ix,Hyi); % Derivatives Dx = ops_x.D1; Dy = ops_y.D1; obj.Dx = kron(Dx,Iy); obj.Dy = kron(Ix,Dy); % Boundary operators obj.e_w = kr(ops_x.e_l, Iy); obj.e_e = kr(ops_x.e_r, Iy); obj.e_s = kr(Ix, ops_y.e_l); obj.e_n = kr(Ix, ops_y.e_r); obj.m = m; obj.h = [ops_x.h ops_y.h]; obj.order = order; obj.a = a; obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy); end % Closure functions return the opertors applied to the own domain to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type) default_arg('type','dirichlet'); sigma = -1; % Scalar penalty parameter switch boundary case {'w','W','west','West'} tau = sigma*obj.a{1}*obj.e_w*obj.H_y; closure = obj.Hi*tau*obj.e_w'; case {'s','S','south','South'} tau = sigma*obj.a{2}*obj.e_s*obj.H_x; closure = obj.Hi*tau*obj.e_s'; end penalty = -obj.Hi*tau; end % type Struct that specifies the interface coupling. % Fields: % -- couplingType String, type of interface coupling % % Default: 'upwind'. Other: 'centered' % -- interpolation: type of interpolation, default 'none' % -- interpolationDamping: damping on upstream and downstream sides, when using interpolation. % Default {0,0} gives zero damping. function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) defaultType.couplingType = 'upwind'; defaultType.interpolation = 'none'; defaultType.interpolationDamping = {0,0}; default_struct('type', defaultType); switch type.interpolation case {'none', ''} [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); case {'op','OP'} [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); otherwise error('Unknown type of interpolation: %s ', type.interpolation); end end function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) couplingType = type.couplingType; % Get neighbour boundary operator e_neighbour = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); switch couplingType % Upwind coupling (energy dissipation) case 'upwind' sigma_ds = -1; %"Downstream" penalty sigma_us = 0; %"Upstream" penalty % Energy-preserving coupling (no energy dissipation) case 'centered' sigma_ds = -1/2; %"Downstream" penalty sigma_us = 1/2; %"Upstream" penalty otherwise error(['Interface coupling type ' couplingType ' is not available.']) end switch boundary case {'w','W','west','West'} tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; closure = obj.Hi*tau*obj.e_w'; penalty = -obj.Hi*tau*e_neighbour'; case {'e','E','east','East'} tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; closure = obj.Hi*tau*obj.e_e'; penalty = -obj.Hi*tau*e_neighbour'; case {'s','S','south','South'} tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; closure = obj.Hi*tau*obj.e_s'; penalty = -obj.Hi*tau*e_neighbour'; case {'n','N','north','North'} tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; closure = obj.Hi*tau*obj.e_n'; penalty = -obj.Hi*tau*e_neighbour'; end end function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) % User can request special interpolation operators by specifying type.interpOpSet default_field(type, 'interpOpSet', @sbp.InterpOpsOP); interpOpSet = type.interpOpSet; couplingType = type.couplingType; interpolationDamping = type.interpolationDamping; % Get neighbour boundary operator e_neighbour = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); switch couplingType % Upwind coupling (energy dissipation) case 'upwind' sigma_ds = -1; %"Downstream" penalty sigma_us = 0; %"Upstream" penalty % Energy-preserving coupling (no energy dissipation) case 'centered' sigma_ds = -1/2; %"Downstream" penalty sigma_us = 1/2; %"Upstream" penalty otherwise error(['Interface coupling type ' couplingType ' is not available.']) end int_damp_us = interpolationDamping{1}; int_damp_ds = interpolationDamping{2}; % u denotes the solution in the own domain % v denotes the solution in the neighbour domain % Find the number of grid points along the interface switch boundary case {'w','e'} m_u = obj.m(2); case {'s','n'} m_u = obj.m(1); end m_v = size(e_neighbour, 2); % Build interpolation operators intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); Iu2v = intOps.Iu2v; Iv2u = intOps.Iv2u; I_local2neighbour_ds = intOps.Iu2v.bad; I_local2neighbour_us = intOps.Iu2v.good; I_neighbour2local_ds = intOps.Iv2u.good; I_neighbour2local_us = intOps.Iv2u.bad; I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us; I_back_forth_ds = I_neighbour2local_ds*I_local2neighbour_ds; switch boundary case {'w','W','west','West'} tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; closure = obj.Hi*tau*obj.e_w'; penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; beta = int_damp_ds*obj.a{1}... *obj.e_w*obj.H_y; closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_w' - obj.Hi*beta*obj.e_w'; case {'e','E','east','East'} tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; closure = obj.Hi*tau*obj.e_e'; penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; beta = int_damp_us*obj.a{1}... *obj.e_e*obj.H_y; closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_e' - obj.Hi*beta*obj.e_e'; case {'s','S','south','South'} tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; closure = obj.Hi*tau*obj.e_s'; penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; beta = int_damp_ds*obj.a{2}... *obj.e_s*obj.H_x; closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_s' - obj.Hi*beta*obj.e_s'; case {'n','N','north','North'} tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; closure = obj.Hi*tau*obj.e_n'; penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; beta = int_damp_us*obj.a{2}... *obj.e_n*obj.H_x; closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_n' - obj.Hi*beta*obj.e_n'; end end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string % boundary -- string function o = getBoundaryOperator(obj, op, boundary) assertIsMember(op, {'e'}) assertIsMember(boundary, {'w', 'e', 's', 'n'}) o = obj.([op, '_', boundary]); end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary points % % boundary -- string function H_b = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) H_b = obj.(['H_', boundary]); end function N = size(obj) N = obj.m; end end end