Mercurial > repos > public > sbplib
view +scheme/Beam.m @ 1327:7ab7d42a5b24 feature/D2_boundary_opt
Fix typo in comment
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 14 Feb 2022 10:49:49 +0100 |
parents | 0c504a21432d |
children |
line wrap: on
line source
classdef Beam < scheme.Scheme properties order % Order accuracy for the approximation grid D % non-stabalized scheme operator alpha h H % Discrete norm Hi e_l, e_r d1_l, d1_r d2_l, d2_r d3_l, d3_r gamm delt alphaII alphaIII opt % TODO: Get rid of this and use the interface type instead end methods function obj = Beam(grid, order, alpha, opsGen, opt) default_arg('alpha', -1); % default_arg('opsGen', @sbp.D4); default_arg('opsGen', @sbp.D4Variable); % Supposed to be better opt_default.interface_l.tuning = 1.1; opt_default.interface_l.tau = []; opt_default.interface_l.sig = []; opt_default.interface_r.tuning = 1.1; opt_default.interface_r.tau = []; opt_default.interface_r.sig = []; default_struct('opt', opt_default); if ~isa(grid, 'grid.Cartesian') || grid.D() ~= 1 error('Grid must be 1d cartesian'); end obj.grid = grid; obj.order = order; obj.alpha = alpha; m = grid.m; h = grid.scaling(); x_lim = {grid.x{1}(1), grid.x{1}(end)}; ops = opsGen(m, x_lim, order); D4 = ops.D4; obj.H = ops.H; obj.Hi = ops.HI; obj.e_l = ops.e_l; obj.e_r = ops.e_r; obj.d1_l = ops.d1_l; obj.d1_r = ops.d1_r; obj.d2_l = ops.d2_l; obj.d2_r = ops.d2_r; obj.d3_l = ops.d3_l; obj.d3_r = ops.d3_r; obj.D = alpha*D4; alphaII = ops.borrowing.N.S2/2; alphaIII = ops.borrowing.N.S3/2; obj.gamm = h*alphaII; obj.delt = h^3*alphaIII; obj.alphaII = alphaII; obj.alphaIII = alphaIII; obj.h = h; obj.opt = opt; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type) default_arg('type','dn'); e = obj.getBoundaryOperator('e', boundary); d1 = obj.getBoundaryOperator('d1', boundary); d2 = obj.getBoundaryOperator('d2', boundary); d3 = obj.getBoundaryOperator('d3', boundary); s = obj.getBoundarySign(boundary); gamm = obj.gamm; delt = obj.delt; % TODO: Can this be simplifed? Can I handle conditions on u on its own, u_x on its own ... switch type case {'dn', 'clamped'} % Dirichlet-neumann boundary condition alpha = obj.alpha; % tau1 < -alpha^2/gamma % tuning = 2; tuning = 1.1; tau1 = tuning * alpha/delt; tau4 = s*alpha; sig2 = tuning * alpha/gamm; sig3 = -s*alpha; tau = tau1*e+tau4*d3; sig = sig2*d1+sig3*d2; closure = obj.Hi*(tau*e' + sig*d1'); penalty{1} = -obj.Hi*tau; penalty{2} = -obj.Hi*sig; case {'free'} a = obj.alpha; tau = s*a*d1; sig = -s*a*e; closure = obj.Hi*(tau*d2' + sig*d3'); penalty{1} = -obj.Hi*tau; penalty{2} = -obj.Hi*sig; case 'e' alpha = obj.alpha; tuning = 1.1; tau1 = tuning * alpha/delt; tau4 = s*alpha; tau = tau1*e+tau4*d3; closure = obj.Hi*tau*e'; penalty = -obj.Hi*tau; case 'd1' alpha = obj.alpha; tuning = 1.1; sig2 = tuning * alpha/gamm; sig3 = -s*alpha; sig = sig2*d1+sig3*d2; closure = obj.Hi*sig*d1'; penalty = -obj.Hi*sig; case 'd2' a = obj.alpha; tau = s*a*d1; closure = obj.Hi*tau*d2'; penalty = -obj.Hi*tau; case 'd3' a = obj.alpha; sig = -s*a*e; closure = obj.Hi*sig*d3'; penalty = -obj.Hi*sig; otherwise % Unknown, boundary condition error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain e_u = obj.getBoundaryOperator('e', boundary); d1_u = obj.getBoundaryOperator('d1', boundary); d2_u = obj.getBoundaryOperator('d2', boundary); d3_u = obj.getBoundaryOperator('d3', boundary); s_u = obj.getBoundarySign(boundary); e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); d1_v = neighbour_scheme.getBoundaryOperator('d1', neighbour_boundary); d2_v = neighbour_scheme.getBoundaryOperator('d2', neighbour_boundary); d3_v = neighbour_scheme.getBoundaryOperator('d3', neighbour_boundary); s_v = neighbour_scheme.getBoundarySign(neighbour_boundary); alpha_u = obj.alpha; alpha_v = neighbour_scheme.alpha; switch boundary case 'l' interface_opt = obj.opt.interface_l; case 'r' interface_opt = obj.opt.interface_r; end if isempty(interface_opt.tau) && isempty(interface_opt.sig) gamm_u = obj.gamm; delt_u = obj.delt; gamm_v = neighbour_scheme.gamm; delt_v = neighbour_scheme.delt; tuning = interface_opt.tuning; tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning; sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning; else h_u = obj.h; h_v = neighbour_scheme.h; switch neighbour_boundary case 'l' neighbour_interface_opt = neighbour_scheme.opt.interface_l; case 'r' neighbour_interface_opt = neighbour_scheme.opt.interface_r; end tau_u = interface_opt.tau; sig_u = interface_opt.sig; tau_v = neighbour_interface_opt.tau; sig_v = neighbour_interface_opt.sig; tau1 = tau_u/h_u^3 + tau_v/h_v^3; sig2 = sig_u/h_u + sig_v/h_v; end tau4 = s_u*alpha_u/2; sig3 = -s_u*alpha_u/2; phi2 = s_u*1/2; psi1 = -s_u*1/2; tau = tau1*e_u + tau4*d3_u; sig = sig2*d1_u + sig3*d2_u ; phi = phi2*d1_u ; psi = psi1*e_u ; closure = obj.Hi*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); penalty = -obj.Hi*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string % boundary -- string function o = getBoundaryOperator(obj, op, boundary) assertIsMember(op, {'e', 'd1', 'd2', 'd3'}) assertIsMember(boundary, {'l', 'r'}) o = obj.([op, '_', boundary]); end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary points % % boundary -- string % Note: for 1d diffOps, the boundary quadrature is the scalar 1. function H_b = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'l', 'r'}) H_b = 1; end % Returns the boundary sign. The right boundary is considered the positive boundary % boundary -- string function s = getBoundarySign(obj, boundary) assertIsMember(boundary, {'l', 'r'}) switch boundary case {'r'} s = 1; case {'l'} s = -1; end end function N = size(obj) N = obj.grid.N; end end end