Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_noneq_minimal_12.m @ 325:72468bc9b63f feature/beams
Renamed some operator implementations.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 26 Sep 2016 09:55:16 +0200 |
parents | f7ac3cd6eeaa |
children | 4cb627c7fb90 |
line wrap: on
line source
function [D1,H,x,h] = d1_noneq_minimal_12(N,L) % L: Domain length % N: Number of grid points if(nargin < 2) L = 1; end if(N<20) error('Operator requires at least 20 grid points'); end % BP: Number of boundary points % m: Number of nonequidistant spacings % order: Accuracy of interior stencil BP = 10; m = 4; order = 12; %%%% Non-equidistant grid points %%%%% x0 = 0.0000000000000e+00; x1 = 4.6552112904489e-01; x2 = 1.4647984306493e+00; x3 = 2.7620429464763e+00; x4 = 4.0000000000000e+00; x5 = 5.0000000000000e+00; x6 = 6.0000000000000e+00; x7 = 7.0000000000000e+00; x8 = 8.0000000000000e+00; x9 = 9.0000000000000e+00; x10 = 1.0000000000000e+01; xb = sparse(m+1,1); for i = 0:m xb(i+1) = eval(['x' num2str(i)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Compute h %%%%%%%%%% h = L/(2*xb(end) + N-1-2*m); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Define grid %%%%%%%% x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix %%%%%%%% P = sparse(BP,1); %#ok<*NASGU> P0 = 1.3013597111750e-01; P1 = 7.6146045079020e-01; P2 = 1.1984222247012e+00; P3 = 1.3340123109301e+00; P4 = 1.0951811473364e+00; P5 = 9.7569096377130e-01; P6 = 1.0061945410831e+00; P7 = 9.9874339446564e-01; P8 = 1.0001702615573e+00; P9 = 9.9998873424721e-01; for i = 0:BP-1 P(i+1) = eval(['P' num2str(i)]); end H = ones(N,1); H(1:BP) = P; H(end-BP+1:end) = flip(P); H = spdiags(h*H,0,N,N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil switch order case 2 d = [-1/2,0,1/2]; case 4 d = [1/12,-2/3,0,2/3,-1/12]; case 6 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; case 8 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; case 10 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; case 12 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; end d = repmat(d,N,1); Q = spdiags(d,-order/2:order/2,N,N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.7603132599815e-01; Q0_2 = -2.6781065957921e-01; Q0_3 = 1.4050310470012e-01; Q0_4 = -5.4072653004710e-02; Q0_5 = -1.1876984028213e-02; Q0_6 = 2.6300694680362e-02; Q0_7 = -9.8077210531438e-03; Q0_8 = 4.2848959311712e-04; Q0_9 = 3.0440269352791e-04; Q0_10 = 0.0000000000000e+00; Q0_11 = 0.0000000000000e+00; Q0_12 = 0.0000000000000e+00; Q0_13 = 0.0000000000000e+00; Q0_14 = 0.0000000000000e+00; Q0_15 = 0.0000000000000e+00; Q1_0 = -6.7603132599815e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 9.5204118058043e-01; Q1_3 = -4.1306598236120e-01; Q1_4 = 1.5442577883533e-01; Q1_5 = 2.6535212157067e-02; Q1_6 = -6.7869317213141e-02; Q1_7 = 2.6431850942376e-02; Q1_8 = -1.8383496124689e-03; Q1_9 = -6.2904733024363e-04; Q1_10 = 0.0000000000000e+00; Q1_11 = 0.0000000000000e+00; Q1_12 = 0.0000000000000e+00; Q1_13 = 0.0000000000000e+00; Q1_14 = 0.0000000000000e+00; Q1_15 = 0.0000000000000e+00; Q2_0 = 2.6781065957921e-01; Q2_1 = -9.5204118058043e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 9.4424869445124e-01; Q2_4 = -3.0369922793820e-01; Q2_5 = -1.7036409572828e-02; Q2_6 = 9.7546158402857e-02; Q2_7 = -4.2534720340735e-02; Q2_8 = 5.3471186513813e-03; Q2_9 = 3.5890734751923e-04; Q2_10 = 0.0000000000000e+00; Q2_11 = 0.0000000000000e+00; Q2_12 = 0.0000000000000e+00; Q2_13 = 0.0000000000000e+00; Q2_14 = 0.0000000000000e+00; Q2_15 = 0.0000000000000e+00; Q3_0 = -1.4050310470012e-01; Q3_1 = 4.1306598236120e-01; Q3_2 = -9.4424869445124e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 8.1369662782755e-01; Q3_5 = -8.4027084126181e-02; Q3_6 = -1.0721180825279e-01; Q3_7 = 6.1098180874949e-02; Q3_8 = -1.2618762739267e-02; Q3_9 = 7.4866320589496e-04; Q3_10 = 0.0000000000000e+00; Q3_11 = 0.0000000000000e+00; Q3_12 = 0.0000000000000e+00; Q3_13 = 0.0000000000000e+00; Q3_14 = 0.0000000000000e+00; Q3_15 = 0.0000000000000e+00; Q4_0 = 5.4072653004710e-02; Q4_1 = -1.5442577883533e-01; Q4_2 = 3.0369922793820e-01; Q4_3 = -8.1369662782755e-01; Q4_4 = 0.0000000000000e+00; Q4_5 = 6.8140317057259e-01; Q4_6 = -5.0090848997730e-02; Q4_7 = -3.2156238350691e-02; Q4_8 = 1.2270208460707e-02; Q4_9 = -8.9539078453821e-04; Q4_10 = -1.8037518037522e-04; Q4_11 = 0.0000000000000e+00; Q4_12 = 0.0000000000000e+00; Q4_13 = 0.0000000000000e+00; Q4_14 = 0.0000000000000e+00; Q4_15 = 0.0000000000000e+00; Q5_0 = 1.1876984028213e-02; Q5_1 = -2.6535212157067e-02; Q5_2 = 1.7036409572828e-02; Q5_3 = 8.4027084126181e-02; Q5_4 = -6.8140317057259e-01; Q5_5 = 0.0000000000000e+00; Q5_6 = 7.3535220394540e-01; Q5_7 = -1.7565390898074e-01; Q5_8 = 4.5853976429252e-02; Q5_9 = -1.2971393808506e-02; Q5_10 = 2.5974025974031e-03; Q5_11 = -1.8037518037522e-04; Q5_12 = 0.0000000000000e+00; Q5_13 = 0.0000000000000e+00; Q5_14 = 0.0000000000000e+00; Q5_15 = 0.0000000000000e+00; Q6_0 = -2.6300694680362e-02; Q6_1 = 6.7869317213141e-02; Q6_2 = -9.7546158402857e-02; Q6_3 = 1.0721180825279e-01; Q6_4 = 5.0090848997730e-02; Q6_5 = -7.3535220394540e-01; Q6_6 = 0.0000000000000e+00; Q6_7 = 8.2185236816776e-01; Q6_8 = -2.4842386107781e-01; Q6_9 = 7.6038690915127e-02; Q6_10 = -1.7857142857146e-02; Q6_11 = 2.5974025974031e-03; Q6_12 = -1.8037518037522e-04; Q6_13 = 0.0000000000000e+00; Q6_14 = 0.0000000000000e+00; Q6_15 = 0.0000000000000e+00; Q7_0 = 9.8077210531438e-03; Q7_1 = -2.6431850942376e-02; Q7_2 = 4.2534720340735e-02; Q7_3 = -6.1098180874949e-02; Q7_4 = 3.2156238350691e-02; Q7_5 = 1.7565390898074e-01; Q7_6 = -8.2185236816776e-01; Q7_7 = 0.0000000000000e+00; Q7_8 = 8.5207110387533e-01; Q7_9 = -2.6676625654053e-01; Q7_10 = 7.9365079365093e-02; Q7_11 = -1.7857142857146e-02; Q7_12 = 2.5974025974031e-03; Q7_13 = -1.8037518037522e-04; Q7_14 = 0.0000000000000e+00; Q7_15 = 0.0000000000000e+00; Q8_0 = -4.2848959311712e-04; Q8_1 = 1.8383496124689e-03; Q8_2 = -5.3471186513813e-03; Q8_3 = 1.2618762739267e-02; Q8_4 = -1.2270208460707e-02; Q8_5 = -4.5853976429252e-02; Q8_6 = 2.4842386107781e-01; Q8_7 = -8.5207110387533e-01; Q8_8 = 0.0000000000000e+00; Q8_9 = 8.5702210251244e-01; Q8_10 = -2.6785714285718e-01; Q8_11 = 7.9365079365093e-02; Q8_12 = -1.7857142857146e-02; Q8_13 = 2.5974025974031e-03; Q8_14 = -1.8037518037522e-04; Q8_15 = 0.0000000000000e+00; Q9_0 = -3.0440269352791e-04; Q9_1 = 6.2904733024363e-04; Q9_2 = -3.5890734751923e-04; Q9_3 = -7.4866320589496e-04; Q9_4 = 8.9539078453821e-04; Q9_5 = 1.2971393808506e-02; Q9_6 = -7.6038690915127e-02; Q9_7 = 2.6676625654053e-01; Q9_8 = -8.5702210251244e-01; Q9_9 = 0.0000000000000e+00; Q9_10 = 8.5714285714289e-01; Q9_11 = -2.6785714285718e-01; Q9_12 = 7.9365079365093e-02; Q9_13 = -1.7857142857146e-02; Q9_14 = 2.5974025974031e-03; Q9_15 = -1.8037518037522e-04; for i = 1:BP for j = 1:BP Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operator %% D1 = H\Q; %%%%%%%%%%%%%%%%%%%%%%%%%%%