Mercurial > repos > public > sbplib
view +time/SBPInTimeScaled.m @ 774:66eb4a2bbb72 feature/grids
Remove default scaling of the system.
The scaling doens't seem to help actual solutions. One example that fails in the flexural code.
With large timesteps the solutions seems to blow up. One particular example is profilePresentation
on the tdb_presentation_figures branch with k = 0.0005
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 18 Jul 2018 15:42:52 -0700 |
parents | e95a0f2f7a8d |
children | 47e86b5270ad |
line wrap: on
line source
classdef SBPInTimeScaled < time.Timestepper % The SBP in time method. % Implemented for A*v_t = B*v + f(t), v(0) = v0 % The resulting system of equations is % M*u_next= K*u_prev_end + f properties A,B f k % total time step. blockSize % number of points in each block N % Number of components order nodes Mtilde,Ktilde % System matrices L,U,p,q % LU factorization of M e_T scaling S, Sinv % Scaling matrices % Time state t vtilde n end methods function obj = SBPInTimeScaled(A, B, f, k, t0, v0, scaling, TYPE, order, blockSize) default_arg('TYPE','gauss'); default_arg('f',[]); if(strcmp(TYPE,'gauss')) default_arg('order',4) default_arg('blockSize',4) else default_arg('order', 8); default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE)); end obj.A = A; obj.B = B; obj.scaling = scaling; if ~isempty(f) obj.f = f; else obj.f = @(t)sparse(length(v0),1); end obj.k = k; obj.blockSize = blockSize; obj.N = length(v0); obj.n = 0; obj.t = t0; %==== Build the time discretization matrix =====% switch TYPE case 'equidistant' ops = sbp.D2Standard(blockSize,{0,obj.k},order); case 'optimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); case 'minimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); case 'gauss' ops = sbp.D1Gauss(blockSize,{0,obj.k}); end I = speye(size(A)); I_t = speye(blockSize,blockSize); D1 = kron(ops.D1, I); HI = kron(ops.HI, I); e_0 = kron(ops.e_l, I); e_T = kron(ops.e_r, I); obj.nodes = ops.x; % Convert to form M*w = K*v0 + f(t) tau = kron(I_t, A) * e_0; M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B); K = HI*tau; obj.S = kron(I_t, spdiag(scaling)); obj.Sinv = kron(I_t, spdiag(1./scaling)); obj.Mtilde = obj.Sinv*M*obj.S; obj.Ktilde = obj.Sinv*K*spdiag(scaling); obj.e_T = e_T; % LU factorization [obj.L,obj.U,obj.p,obj.q] = lu(obj.Mtilde, 'vector'); obj.vtilde = (1./obj.scaling).*v0; end function [v,t] = getV(obj) v = obj.scaling.*obj.vtilde; t = obj.t; end function obj = step(obj) forcing = zeros(obj.blockSize*obj.N,1); for i = 1:obj.blockSize forcing((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i)); end RHS = obj.Sinv*forcing + obj.Ktilde*obj.vtilde; y = obj.L\RHS(obj.p); z = obj.U\y; w = zeros(size(z)); w(obj.q) = z; obj.vtilde = obj.e_T'*w; obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end methods(Static) function N = smallestBlockSize(order,TYPE) default_arg('TYPE','gauss') switch TYPE case 'gauss' N = 4; end end end end