Mercurial > repos > public > sbplib
view +time/SBPInTime.m @ 774:66eb4a2bbb72 feature/grids
Remove default scaling of the system.
The scaling doens't seem to help actual solutions. One example that fails in the flexural code.
With large timesteps the solutions seems to blow up. One particular example is profilePresentation
on the tdb_presentation_figures branch with k = 0.0005
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 18 Jul 2018 15:42:52 -0700 |
parents | 38173ea263ed |
children | 8894e9c49e40 |
line wrap: on
line source
classdef SBPInTime < time.Timestepper % The SBP in time method. % Implemented for v_t = A*v + f(t) % % Each "step" takes one block step and thus advances % k = k_local*(blockSize-1) in time. properties M % System matrix L,U,P,Q % LU factorization of M A Et_r penalty f k_local % step size within a block k % Time size of a block k/(blockSize-1) = k_local t v m n blockSize % number of points in each block order nodes end methods function obj = SBPInTime(A, f, k, t0, v0, TYPE, order, blockSize) default_arg('TYPE','gauss'); if(strcmp(TYPE,'gauss')) default_arg('order',4) default_arg('blockSize',4) else default_arg('order', 8); default_arg('blockSize',time.SBPInTime.smallestBlockSize(order,TYPE)); end obj.A = A; obj.f = f; obj.k_local = k/(blockSize-1); obj.k = k; obj.blockSize = blockSize; obj.t = t0; obj.m = length(v0); obj.n = 0; %==== Build the time discretization matrix =====% switch TYPE case 'equidistant' ops = sbp.D2Standard(blockSize,{0,obj.k},order); case 'optimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); case 'minimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); case 'gauss' ops = sbp.D1Gauss(blockSize,{0,obj.k}); end D1 = ops.D1; HI = ops.HI; e_l = ops.e_l; e_r = ops.e_r; obj.nodes = ops.x; Ix = speye(size(A)); It = speye(blockSize,blockSize); obj.Et_r = kron(e_r,Ix); % Time derivative + penalty tau = 1; Mt = D1 + tau*HI*(e_l*e_l'); % penalty to impose "data" penalty = tau*HI*e_l; obj.penalty = kron(penalty,Ix); Mx = kron(It,A); Mt = kron(Mt,Ix); obj.M = Mt - Mx; %==============================================% % LU factorization [obj.L,obj.U,obj.P,obj.Q] = lu(obj.M); % Pretend that the initial condition is the last level % of a previous step. obj.v = 1/(e_r'*e_r) * obj.Et_r * v0; end function [v,t] = getV(obj) v = obj.Et_r' * obj.v; t = obj.t; end function obj = step(obj) obj.v = time.sbp.sbpintime(obj.v, obj.t, obj.nodes,... obj.penalty, obj.f, obj.blockSize,... obj.Et_r,... obj.L, obj.U, obj.P, obj.Q); obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end methods(Static) function N = smallestBlockSize(order,TYPE) default_arg('TYPE','gauss') switch TYPE case 'equidistant' switch order case 2 N = 2; case 4 N = 8; case 6 N = 12; case 8 N = 16; case 10 N = 20; case 12 N = 24; otherwise error('Operator does not exist'); end case 'optimal' switch order case 4 N = 8; case 6 N = 12; case 8 N = 16; case 10 N = 20; case 12 N = 24; otherwise error('Operator does not exist'); end case 'minimal' switch order case 4 N = 6; case 6 N = 10; case 8 N = 12; case 10 N = 16; case 12 N = 20; otherwise error('Operator does not exist'); end case 'gauss' N = 4; end end end end