view +time/Rungekutta4SecondOrder.m @ 774:66eb4a2bbb72 feature/grids

Remove default scaling of the system. The scaling doens't seem to help actual solutions. One example that fails in the flexural code. With large timesteps the solutions seems to blow up. One particular example is profilePresentation on the tdb_presentation_figures branch with k = 0.0005
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 18 Jul 2018 15:42:52 -0700
parents ae905a11e32c
children c6fcee3fcf1b 8894e9c49e40 74eec7e69b63
line wrap: on
line source

classdef Rungekutta4SecondOrder < time.Timestepper
    properties
        F
        k
        t
        w
        m
        D
        E
        S
        M
        C
        n
    end


    methods
        % Solves u_tt = Du + Eu_t + S by
        % Rewriting on first order form:
        %   w_t = M*w + C(t)
        % where
        %   M = [
        %      0, I;
        %      D, E;
        %   ]
        % and
        %   C(t) = [
        %      0;
        %      S(t)
        %   ]
        % D, E, S can either all be constants or all be function handles,
        % They can also be omitted by setting them equal to the empty matrix.
        function obj = Rungekutta4SecondOrder(D, E, S, k, t0, v0, v0t)
            obj.D = D;
            obj.E = E;
            obj.S = S;
            obj.m = length(v0);
            obj.n = 0;


            if isa(D, 'function_handle') || isa(E, 'function_handle') || isa(S, 'function_handle')
                default_arg('D', @(t)sparse(obj.m, obj.m));
                default_arg('E', @(t)sparse(obj.m, obj.m));
                default_arg('S', @(t)sparse(obj.m, 1)    );

                if ~isa(D, 'function_handle')
                    D = @(t)D;
                end
                if ~isa(E, 'function_handle')
                    E = @(t)E;
                end
                if ~isa(S, 'function_handle')
                    S = @(t)S;
                end

                obj.k = k;
                obj.t = t0;
                obj.w = [v0; v0t];

                % Avoid matrix formulation because it is VERY slow
                obj.F = @(w,t)[
                    w(obj.m+1:end);
                    D(t)*w(1:obj.m) + E(t)*w(obj.m+1:end) + S(t);
                ];
            else

                default_arg('D', sparse(obj.m, obj.m));
                default_arg('E', sparse(obj.m, obj.m));
                default_arg('S', sparse(obj.m, 1)    );

                I = speye(obj.m);
                O = sparse(obj.m,obj.m);

                obj.M = [
                    O, I;
                    D, E;
                ];
                obj.C = [
                    zeros(obj.m,1);
                                 S;
                ];

                obj.k = k;
                obj.t = t0;
                obj.w = [v0; v0t];

                obj.F = @(w,t)(obj.M*w + obj.C);
            end
        end

        function [v,t] = getV(obj)
            v = obj.w(1:end/2);
            t = obj.t;
        end

        function [vt,t] = getVt(obj)
            vt = obj.w(end/2+1:end);
            t = obj.t;
        end

        function obj = step(obj)
            obj.w = time.rk4.rungekutta_4(obj.w, obj.t, obj.k, obj.F);
            obj.t = obj.t + obj.k;
            obj.n = obj.n + 1;
        end
    end


    methods (Static)
        function k = getTimeStep(lambda)
            k = rk4.get_rk4_time_step(lambda);
        end
    end

end