view +time/CdiffTimeDep.m @ 774:66eb4a2bbb72 feature/grids

Remove default scaling of the system. The scaling doens't seem to help actual solutions. One example that fails in the flexural code. With large timesteps the solutions seems to blow up. One particular example is profilePresentation on the tdb_presentation_figures branch with k = 0.0005
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 18 Jul 2018 15:42:52 -0700
parents 151ab2b5a686
children 8894e9c49e40
line wrap: on
line source

classdef CdiffTimeDep < time.Timestepper
    properties
        D
        E
        S
        k
        t
        v
        v_prev
        n
    end


    methods
        % Solves u_tt = Du + E(t)u_t + S(t)
        % D, E, S can either all be constants or all be function handles,
        % They can also be omitted by setting them equal to the empty matrix.
        % CdiffTimeDep(D, E, S, k, t0, n0, v, v_prev)
        function obj = CdiffTimeDep(D, E, S, k, t0, n0, v, v_prev)
            m = length(v);
            default_arg('E', @(t)sparse(m,m));
            default_arg('S', @(t)sparse(m,1));

            obj.D = D;
            obj.E = E;
            obj.S = S;

            obj.k = k;
            obj.t = t0;
            obj.n = n0;
            obj.v = v;
            obj.v_prev = v_prev;
        end

        function [v,t] = getV(obj)
            v = obj.v;
            t = obj.t;
        end

        function [vt,t] = getVt(obj)
            vt = (obj.v-obj.v_prev)/obj.k; % Could be improved using u_tt = f(u))
            t = obj.t;
        end

        function obj = step(obj)
            [obj.v, obj.v_prev] = time.cdiff.cdiff(obj.v, obj.v_prev, obj.k, obj.D, obj.E(obj.t), obj.S(obj.t));
            obj.t = obj.t + obj.k;
            obj.n = obj.n + 1;
        end
    end
end